
A Replication and Reproduction of Code Clone Detection Studies

Xiliang Chen
Electrical and Computer Engineering

The University of Auckland
Auckland, New Zealand

xche185@aucklanduni.ac.nz

Alice Yuchen Wang
Electrical and Computer Engineering

The University of Auckland
Auckland, New Zealand

ywan478@aucklanduni.ac.nz

Ewan Tempero
Computer Science

The University of Auckland
Auckland, New Zealand

e.tempero@auckland.ac.nz

Abstract—Code clones, fragments of code that are similar
in some way, are regarded as costly. In order to understand
the level of threat and opportunity of clones, we need to be
able to efficiently detect clones in existing code. Recently, a new
clone detection technique, CMCD, has been proposed. Our goal
is to evaluate it and, if possible, improve on the original. We
replicate the original study to evaluate the effectivenessof basic
CMCD technique, improve it based on our experience with the
replication, and apply it to a 43 open-source Java code from
the Qualitas Corpus. We find the original technique is quite
effective. Applying our improved technique we find that that
1 in 2 systems had at least 10% cloned code, not counting
the original, indicating that cloned code is quite common. We
believe the CMCD technique provides a very promising means
to support research into code clones.

Keywords-Clone detection; Code Analysis; Empirical Studies

I. I NTRODUCTION

Code clones, fragments of code that are similar in some
way, are regarded as costly[1], [2]. There is some evidence
that the number of clones in any given system can be non-
trivial (e.g. [3], [4], [5], [1], [6]). This means, that if code
clones do represent an unnecessary cost, then their existence
is both a threat to the software quality and an opportunity for
improvement. In order to understand the level of threat and
opportunity, we need to be able to detect clones in existing
code. If there are few code clones, then their cost is not so
important. In order to understand the cost associated with
clones, we need to be able to identify clones and determine
the cost due to their existence.

To detect clones, we need a means that is both efficient
and effective. If the techniques used to detect clones have
poor accuracy, then effort will be wasted identifying false
positives, and the results will be uncertain due to the
unknown false negatives. If the clone detection techniques
are inefficient, it will be difficult to gather enough data to be
useful. Many existing clone detection techniques are quite
expensive, particularly in time, or trade off time for accuracy.

Recently, Yuan and Guo demonstrated a new technique,
CMCD (for Count Matrix Clone Detection), for detecting
clones that is very efficient and appears quite effective [7].
The basic idea is language-independent and is relatively
straight-forward to implement, so that it may be possible

to produce good clone detectors for many languages quite
quickly. If it is as good as it appears, CMCD has very good
potential for significantly increasing the number and size
of empirical studies, thus improving our understanding of
the impact of code clones. In this paper, we investigate
the usefulness of CMCD. Specifically, we present an im-
proved version of the technique, discuss its effectiveness,
and present the results of using it on a large corpus of Java
code.

In scientific study, it is not enough to observe something
once to be convinced of the validity of some theory, the
observations must berepeated. As Popper said, “We do
not take even our own observations quite seriously, or
accept them as scientific observations, until we have repeated
and tested them.” [8] While there have been a number of
empirical studies reporting the degree to which code clones
exist, various issues that exist with those studies mean it is
not obvious how the results compare with each other, and
generally make it hard for the research community to claim
any certainty regarding how much cloning exists. Much
more repetition is needed, and our work is another step in
this process.

What constitutes a useful repetition is a matter of some de-
bate [9], however in this paper we consider what Cartwright
refers to asreplicability — doing the same experiment again
— and reproducibility — doing a new experiment [10]. In
this paper we replicate (as much as possible) the study by
Yuan and Guo to demonstrate the validity of CMCD and we
attempt to reproduce the results of various empirical studies
undertaken to determine the degree to which code clones
exist in Java code.

The rest of the paper is organised as follows. In the next
section we present some of the literature on empirical studies
of code clones to determine what has been established so far.
In section III, we summarise the original CMCD technique.
In section IV, we describe the modifications we have made
to CMCD, and how we carried out the replication and
reproduction studies. We present our results in section V
and discuss them in section VI. Finally we present our
conclusions and discussion future work.



II. BACKGROUND AND RELATED WORK

In this section we introduce the concepts generally asso-
ciated with clone detection and give an overview of clone
detection related research. The literature in clone detection
research is quite extensive, and so we necessarily can only
give a sample here. Roy et al. provide a good survey [11]
and we use their terminology below. We detail only the work
that is directly relevant to ours.

A code fragmentis any sequence of code lines that can
be any granularity, such as a complete method definition or
sequence of statements inside an if-statement [12]. Aclone
pair is defined by having two code fragments that are similar
by some given definition of similarity. When more than two
fragments are similar, they form aclone clusteror clone
group. There are two main types of similarity between code
fragments: textual similarity and semantic similarity. Two
fragments have textual similarity when the text they contain
is matches to a large degree. This might be the consequence
of copying and pasting one fragment to the other, perhaps
with minor modifications. Two fragments are semantically
similar if they have similar functionality, but may have
completely different text. Clone types can be categorised into
four types based on both textual and semantic similarities
(taken from Roy et al. [11]):

Type-1: Identical code fragments except for variations in
whitespace, layout and comments.

Type-2: Syntactically identical fragments except for vari-
ations in identifiers, literals, types, whitespace,
layout and comments.

Type-3: Copied fragments with further modifications such
as changed, added or removed statements, in ad-
dition to variations in identifiers, literals, types,
whitespace, layout and comments.

Type-4: Two or more code fragments that perform the
same computation but are implemented by different
syntactic variants.

Most of the clone detection techniques can be summarised
into four main categories: textual, lexical, syntactic and
semantic [11].

Textual approaches compare the source code with little or
no transformation. In most cases raw source code is used di-
rectly in the clone detection process. Such approaches must
cope with variation of all kinds, including in whitespace. An
early such approach was described by Johnson [13].

Lexical approaches transform the source code into a
sequence of lexical tokens using compiler-style lexical anal-
ysis. Comparison is then done between sequences of tokens
to identify common subsequences. These approaches easily
deal with variation in whitespace, layout, and comments.
Also, variations in identifiers or literals can also be dealt
with. An example of this approach was described by Baker
[14].

Syntactic approaches use a parser to convert the source

code into parse trees or abstract syntax trees (ASTs). Com-
parison is then done between the trees for commonality,
possibly using structural metrics. The work by Baxter et
al. is perhaps the best known of these approaches [4].

Semantic approaches use static program analysis, which
does a more sophisticated comparison than just at the syntax
level. One technique that is used is to represent the code as
a program dependency graph (PDG) and then analyse that.
An example of this approach uses backward slicing [15].

Roy et al. describe 4scenarios giving examples of
each of the categories described above, with further sub-
scenarios for each category, a total of 16 examples. They
then evaluated more than 40 techniques with respect to
these 16 examples, providing both clear criteria (at least as
a starting point) for what might constitute a clone, and a
comprehensive summary of that the state-of-the-art at that
time could handle.

As mentioned in the introduction, our work is based on the
CMCD technique developed by Yuan and Guo [7], which we
will detail in the next section. This technique is a syntactic
approach, specifically it falls in to the category Roy et al. call
metrics-based approaches. Generally, these approaches make
measurements of the code fragments using one or more met-
rics. The value of the measurements indicate how similar the
code fragments are. One example of this is by Mayrand et al.
[16] who gather measurements from a number of metrics,
such as different characteristics of the layout of the code,
number and type of statement, and characteristics of control
flow such as number of decisions, average nesting level, and
number of exits. Another example is by Kontogiannis [17],
who uses more common metrics such as Fan-in, Fan-out,
and Cyclomatic Complexity Number.

Once measurements are produced, the existence of clones
is determined by the similarity of the measurements. The
comparison of measurements may be done in different ways,
depending on who the measurements look like. For example,
Kontogiannis groups the measurements into 4 categories,
and then compares each category separately. The results of
the 4 comparisons are then used to produce an ordinal scale
measurement capturing how different (or similar) two code
fragments are. Another example is by Davey et al., who use
a self organising neural net to do the comparisons [18].

With all the variations in techniques, the question that
naturally arises is which is the best? Unfortunately there is
no clear answer, not only because the answer depends on
the reason for detecting clones, but also because there has
been insufficient comparison between the techniques.

For an example on how context might affect which
quality attributes of the clone detection technique we desire,
consider plagiarism detection in student assignments. In this
context, we would probably do this off-line (as a batch
process), we might expect the size of the inputs to be
relatively small (hundreds, or perhaps a few thousand, lines
of code), and we would likely be willing to accept missing



some cases (false negatives) in order to ensure not making
any false accusations (false positives). On the other hand,
to support a code review function in an IDE, we would
want real-time information of possibly a large code base,
but would accept a reasonable degree of false positives and
false negatives. These two examples represent a trade-off of
preferences in performance versus accuracy. Other trade-offs
include what constitutes a clone, for example only requiring
detection of Type 1 and Type 2 clones, and what granularity
of code fragments are to be considered, such as comparing
only subroutines or comparing blocks.

As an example of other uses of clone detectors, Li
and Ernst examined the degree to which code clones also
contained duplicated buggy code [2]. Their detector used
a semantic approach based on PDGs. They examined 3
systems (Git, Linux kernel, and PostgreSQL). Using the
systems’ bug reports, they identified the code fragments
where the bugs occurred, and then tried to find clones of
those fragments. They compared their system against 4 other
clone detectors. Their system performed as well or better
than the others in both accuracy and performance.

There have been some comparisons of different tech-
niques. Bellon et al. compared 6 clone detectors that used
different approaches over 4C and 4 Java systems with
respect to their accuracy and performance [12]. While there
was no clear winner, they noted that the AST-based ap-
proaches tended to have higher precision (fewer false posi-
tives) but were also longer execution time, whereas token-
based approaches had higher recall (fewer false negatives)
but were faster. They commented that “if idea from the
token-based techniques could be made to work on ASTs,
we would be able to find syntactic clones with less effort.”

Falke et al. did a follow up study using the same infras-
tructure as by Bellon et al. to examine the quality of clone
detectors based on suffix trees [5]. They found that using
suffix trees was faster than the standard AST matching, but
with varying recall and precision.

Two important questions relating to clone detection re-
search are: Is the belief that clones are a problem correct,
and; Are there enough clones in real code to matter?
Juergens et al. addressed the first question by developing
a new clone detector and applying it to 5 projects, 4 from 2
companies (3 in C#, 1 in Cobol), and one open source (Java)
[1]. They were particularly interested in what they called
inconsistentclones, code fragments that differ by more
than just simple changes that apply to the whole fragment,
such as renaming variables (effectively Type-2 clones). They
presented identified inconsistent clones to the developersof
the systems, and from the developers determined whether
the inconsistency was intentional or not, and whether the
clones were faulty or not. From this they concluded that
inconsistent clones are a major source of faults. The results
by Li and Ernst also suggest that clones are a problem, by
finding clones that contain the same bugs [2].

There does not appear to have been any systematic large-
scale studies to determine the degree to which code clones
exist. However, most presentations of new clone detectors
provide data from their application that indicates that clones
are relatively common.

For example, in an early study, Baker found on the order
of 19% of the X Window System [3] are either Type-1 or
Type-2 clones. Baxter et al. looked at 19 subsystems of
a process-control system with 400 KSLOC of C code [4].
Their results indicated that on average 12.7% of code was
cloned, with at least two subsystems having over 28%.

Juergens et al. found 300 or more clone groups (2 or more
code fragments that are clones of each other) in 4 of the 5
systems. They do not indicate what proportion of the overall
code base these groups represent, nevertheless it must be
non-trivial.

While Bellon et al.’s goal was to compare detectors, they
include information about candidates reported by the tools,
the size of code fragments identified as candidates, and
information on accuracy in their results. While it is difficult
to determine the proportion of cloned code, again it is clear
that it must be non-trivial.

Schwarz et al. examine the repositories of Squeaksource, a
repository in the Smalltalk ecosystem [6]. They found 14.5%
of all methods strings (560K different methods in 74K
classes) were present in at least two distinct repositories.

In summary, various studies consistently report that code
clones exist to a non-trivial degree, with many measurements
of more than 10% being reported.

III. O RIGINAL CMCD TECHNIQUE

In order to make our contribution clear a good under-
standing of the original CMCD technique is needed, which
we provide below. More details are available in the original
publication [7]. The modifications we made are described in
the next section.

The CMCD technique determines the similarity between
two code fragments by modelling each with acount matrix
and comparing the count matrices. A count matrix is made
up of a set ofcount vectors. In the original CMCD, there is
one count vector for each variable that appears in the code
fragment. The values in a count vector come from a set
of counting conditionsthat are applied to the variable that
vector represents. The counting conditions represent how a
variable is “used”. The intuition is, if two code fragments are
indeed clones, then a variable in one fragment will have a
counterpart in the other fragment that is used in very similar
ways, so the count vectors will be very similar. Also, most
variables in one fragment will have counterparts in the other
fragment, so the count matrices will be very similar. If, on
the other hand, the fragments are very different, then there
is a high probability that many variables in one fragment
will have no obvious counterpart in the other, so the count
matrices will look different.



Table I
THE ORIGINAL COUNTING CONDITIONS [7]

1 Used
2 Added or subtracted
3 Multiplied of divided
4 Invoked as parameter
5 In an if-statement
6 As an array subscript
7 Defined
8 Defined by add or subtract operation
9 Defined by multiply or divide operation
10 Defined by an expression which has constants in it
11 In a third-level loop (or deeper)
12 In a second-level loop
13 In a first-level loop

As the Yuan and Guo noted in the original publication,
exactly what constitutes a “use” is maybe not as important as
applying the counting conditions consistently. Nevertheless
the counting conditions do need to indicate some reasonable
notion of “use”. The original counting conditions are shown
in Table I. These counting conditions all are uses of variables
that are familiar to any programmer. Clearly other counting
conditions are possible as the authors acknowledge, but it
is not obvious whether the extra cost of adding more will
significantly change the outcome. We return to this point in
the next section.

Two count vectors are compared by computing the nor-
malised distance between them. The original technique uses
euclidean distance and normalises (roughly) by dividing by
the vector lengths (see paper for full details). The resulting
distance is in the range[0..1], where 1 means identical.

After computing the count vectors for each variable for
each code fragment, the resulting count matrices need to
be compared to determine similarity. An issue arises in that,
while each variable in one fragment may have a very similar
counterpart in the other fragment, this may not be obvious
if the order of the count vectors is different in the count
matrices, that is, it is not enough to just compare the first
row of one matrix with the first row of the other, and so
on. CMCD resolves this issue using maximum weighted
bipartite matching as follows.

Each row in the two matrices being compared is treated
as a vertex in a graph, and each vertex from one matrix
has an edge to every vertex in the other matrix. Each edge
is weighted by the distance between the two respective
count vectors. This results in a weighted bipartite graph.
The maximum weighted bipartite matching of this graph
is then a pairing of count vector from one matrix with a
count vector in the other matrix that maximises the sum of
the count vector distances. This sum is then the measure of
similarity between the code fragments.

The similarity value may also be normalised, to account
for comparing code fragments of different sizes, or have a
different number of variables. Also, in case it is possible
for two quite different fragments to get a high similarity

measurement, a false positive elimination step is applied
using heuristics. The authors do not give any details as to
what heuristics they use.

The same idea can be used to compare two sets of code
fragments — a weighted bipartite graph can be constructed
where a vertex is the count matrix for a code fragment,
and edges are between vertices from one set to the other
weighted by the similarity score between the corresponding
code fragments. Again, maximum weighted bipartite match-
ing can be used to determine how similar the two sets are.
In this way two classes can be compared for similarity by
treating each method as a code fragment and applying the
technique as described above.

Yuan and Guo evaluated their CMCD technique by using
it in three different ways. First, they applied it to the 16 sce-
narios described by Roy et al., demonstrating that it detected
all 16 cases. They then applied it to 29 student medium-
sized project submissions (7 KLOC – 38 KLOC, 585 KLOC
in total). The processing took 123 minutes on relatively
standard hardware and they found 2 clone clusters. Manual
examination concluded that would have been difficult to
identify the clusters through manual inspection. Despite the
fact that all projects implemented the same functionality,
they did not find any false positives.

The third evaluation method was to analyse JDK 1.6.018
(about 2 MLOC). They compared every pair of methods in
this code base, ignoring very small methods such as getters
and setters. The processing took 163 minutes and found
786 similar methods over 174 clusters. One of the clusters
included at least one instance that appeared to contain a
fault.

IV. METHODOLOGY

The research questions we would like to answer are:
RQ1 Is the CMCD technique as effective as its authors

claim and can it be improved?
RQ2 How much code is created through cloning?
The basic steps we follow are:
1) Implement the CMCD technique as close as practical

to the original.
2) Perform two of the three evaluations described in the

original paper (see section II).
3) Based on the results of, and experience gained by, per-

forming the previous step, refine our implementation.
4) Evaluate the effectiveness of the refinement, returning

to step 3 if the results indicate the need for, or
possibility of, improvement.

5) Apply the refined implementation to a large body of
code, returning to step 3 if the results indicate the need
for, or possibility of, improvement.

Some of these steps are elaborate further below.
There are two details we need to clarify: what definition

of clone we are using and what level of granularity of clone
we will detect.



As others have noted, in particular Roy et al. [11], there
is no agreed upon evaluation criteria as to when two code
fragments are clones. We use the same intuition as others,
namely that two code fragments are clones if one could
“reasonably” have resulted by copying and pasting the
other and making “minor” changes. While this introduces
a degree of subjectivity, we follow Yuan and Guo and use
the scenarios proposed by Roy et al., which provides some
means of comparison with other work. We discuss this
further in Section VI-C.

We also follow the original CMCD technique, which
compares code fragments that are methods, that is, it does
not detect clones that are smaller than methods. We choose
to do so as one of our goals is to replicate Yuan and Guo’s
study. How this technique might be applied to sub-method
clones is a topic for future work.

A. CMCD implementation

As Yuan and Guo used Java as their target language, we
choose to do the same. Their implementation determined the
count matrices based on the Jimple representation of the Java
source, which is a 3-address code representation produced
using the SOOT framework [19]. We had a concern about
this decision.

The Jimple representation is necessarily different from the
original source code, and furthermore is a transformation
of the compiled code (bytecode) rather than the original
source code. Yuan and Guo argue that these transformations
have little effect on the results. Our concern is that the
two transformations may mean that slight differences in the
source code may result in more significant differences in
the Jimple representation. For example, information could
be lost during compilation which may affect the level of
accuracy, especially if optimisation techniques are used.
Also, the transformation to Jimple involves introduction of
temporary variables, and slight differences in the source code
may result in different temporaries, potentially resulting in
a more significant change at the Jimple representation than
exists in the original source.

If we are right, then we would get better results dealing
with the source code directly. Furthermore, if Yuan and Guo
are right, it should not matter if our implementation uses a
different technique to determine the count matrices.

Consequently we decided to base our implementation on
a parser for Java source code. We used ANTLR (antlr.org)
to create the parser. This produces an Abstract Syntax
Tree (AST), which is then traversed, applying the counting
conditions as appropriate to each vertex. The count matrices
are created and compared as in the original.

Unlike the original technique, rather than measure similar-
ity between methods (smaller values means less similar), we
measureddifferences(smaller values means more similar).

As noted in Section III, the meaning of the measurements
can depend on the method size. The measurement for

two large methods might be the same as for two small
methods, which would mean the large methods are much
more similar than the two small methods, and so some form
of normalisation is needed. Also, the values of the counts can
impact the measurement. The difference between two large
counts for a giving counting condition can be the same as
for two small counts, again indicating that the former is in
fact more similar than the latter.

Unfortunately, the original paper does not describe how
normalisation was performed, so we have to develop our
own. After some investigation, we concluded the best nor-
malisation was achieved by summing the values for the
smaller count matrix, and dividing the raw difference mea-
surement by that sum.

The false positive clone detection method mentioned in
the original paper was also not described and thus we have
come up with our own false positive detection method. As
cloned fragments of code are similar or the same as the
original fragment of code, we used a textual approach to
discard clone pairs detected that had over 50% differences
in text. This difference was computed after spaces and
comments had been removed.

To improve performance, we classified method pairs by
comparing the normalised difference between the two matri-
ces to a predetermined threshold value. The threshold value
was determined by analysing the distribution of difference
values of clone pairs. This process consisted of:

1) Detecting all possible clone pairs for a selected soft-
ware system and calculating the difference values.

2) Manually reviewing each method pair found and clas-
sifying it into one of the categories: clone, modified
clone, similar but not clone, and not clone. (Also see
below.)

3) Plotting a chart showing the distribution of different
type of method pairs.

4) Determine the threshold value based on distribution.
Freecol version 0.8.0 was used for the analysis. The chart

is shown in figure 1. From the chart, the default threshold
value was chosen to be 45 to provide a balance between
false positive and false negatives.

Very small methods, such as getters and setters, are likely
to look very similar. Also, even if they are created through
cloning, identifying them as such is not very useful because
they are so small. The original technique chose to ignore
small methods for this reason, but did not specify how they
identified such methods. In our implementation, the number
of nodes in AST is used as the size of the method. A method
is considered small if its size is less than a certain value.
The number of lines of code was not used as the size of the
method because it did not reflect the complexity of the code
fragments and it may vary significantly depending on the
coding style. By looking at small methods such as getters
and setters, we determined that an AST with 50 or fewer
nodes could be reasonably classified as small.



 0

 10

 20

 30

 40

 50

 60

 70

 80

0-3
3-6

6-9
9-12

12-15
15-18

18-21
21-24

24-27
27-30

30-33
33-36

36-39
39-42

42-25
45-48

48-51
51-54

54-57
57-60

60-63

N
um

be
r 

of
 m

et
ho

d 
pa

irs

Difference value

Clone
Modified

Similar
Not clone

Figure 1. Showing the trade-off in candidate pair classification according
to difference choices of threshold value. The 0–3 value has been truncated
(from 179) for presentation purposes.

Constructors are also ignored, as constructor clones are
not very interesting. In addition, it is easy to get two
constructors with the same variable count in a large system,
and therefore they will introduce false positives.

B. Replication

We applied our implementation of the CMCD technique
to the same 16 scenarios used by Yuan and Guo, and also
to JDK 1.6.0 18. We did not have access to the student
submissions and so did not replicate that part of their study.

C. Evaluation and Refinement

The original paper hinted that other counting conditions
might be useful, so we planned from the beginning to
support adding new conditions. That meant we also needed
some way to select different conditions, and some way to
show the results. We also needed to be able to vary various
parameters, such as the choice of thresholds (see below). To
support evaluation, we quickly learnt that it was important
to not just see the list of candidate pairs, but to also show the
contents of the pair, highlighting the differences betweenthe
two fragments. By examining candidate pairs in this way, we
could then efficiently determine the accuracy of the choice of
parameters by determining by manual inspection whether the
candidate pair was indeed a clone pair. Finally, we needed
the means to record the result of the manual inspection.

To this end, we developed a tool that can apply the
foundation CMCD technique to any code base and that
supports choosing different sets of counting conditions,
different parameter values, reporting candidate clone pairs,
highlighting the differences between a selected candidate
pair, and recording the result of the manual inspection.

Candidate pairs are classified as “clone”, “modified
clone”, “similar but not clone” or “not clone”. “Clone”
is where the method pair is clearly identical with minor

changes such as differences variable types or variable names.
“Modified Clone” is the same as “clone” but allowing a few
addition or deletion of statements. “Similar but not clone”is
used for classifying code clones where at a glance, they have
lots of similarities in terms of structure and sub fragments
of code, but is modified enough to not be considered clones.
“Not clones” is where the method pair is clearly not a clone.
This classification data can be saved for analysis and future
clone detections, so that there is no need to reclassify clones
when the detection process is rerun with different input
parameters.

Clone pairs can be sorted based on any of the character-
istics of the pairs (such as the value of the pre-normalised
difference between a pair). This aids the identification of
clone patterns in our results by ordering the results to allow
for easy access to groups of data, and visualisation of
correlation between data types. For example, clone pairs can
be sorted by clone classification and then by the difference
value of the method pair to determine if there is a correlation.

The tool we developed allows us to identify false positives
(candidate pairs that are not in fact clones). Identifying false
negatives (clone pairs that are never offered as candidates)
is more challenging, however our tool also supports this
because it allows us to easily change various parameters
to the technique, in particular the thresholds. The choice
of thresholds affects the level of false positives and false
negatives — the higher the threshold the more false positives
but the fewer false negatives. If we want to determine the
degree of false negatives for a given thresholdt, we can set
the threshold to a valuel much larger thant, and examine
those candidate pairs that are clones reported at levell

that are not reported at levelt. These pairs are then false
negatives at levelt.

Identifying false negatives, as well as allowing us to
provide error bounds on our results, also provides support for
refining the technique. By examining false negatives, we can
identify new counting conditions that may have the potential
to detect such cases.

D. Empirical Study

Our empirical study was carried out on 43 open
source Java systems from the Qualitas Corpus, release
20120401[20]. We did both a breadth (different systems)
and a longitudinal (multiple versions of the same system)
study. The systems we used are listed in Figure 2, with
those used for the longitudinal study marked by‡. See the
Qualitas Corpus website (qualitascorpus.com) for detailsof
the systems studied, such has which files are analysed.

V. RESULTS

In this section, we present the results of the different parts
of our study. Their interpretation and consequences will be
discussed in the next section.



normVCM=
dVCM(total(vCM1)+ total(vCM2))

total(vCM1)+ total(vCM2)+ total(mCM1)+ total(mCM2)

Figure 3. Normalising difference between variable and method count matrices for two code fragments.

ant-1.8.0 argouml-0.34‡ c jdbc-2.0.2 cayenne-3.0.1
cobertura-1.9.4.1 compiere-330 drawswf-1.2.9 freecol-
0.10.3‡ freemind-0.9.0‡ ganttproject-2.0.9 gt2-2.7-
M3 heritrix-1.14.4 hibernate-4.0.1‡ hsqldb-2.0.0
jFin DateMath-R1.0.1 jag-6.1 javacc-5.0 jgraph-
5.13.0.0‡ jgraphpad-5.10.0.2 jgrapht-0.8.1 jhotdraw-
6.0.1‡ joggplayer-1.1.4s jrat-0.6 jrefactory-2.9.19
jruby-1.5.2 jtopen-7.1 marauroa-3.8.1 maven-3.0
nakedobjects-4.0.0 nekohtml-1.9.14 poi-3.6 pooka-
3.0-080505 roller-4.0.1 sablecc-3.2 struts-2.2.1
sunflow-0.07.2 trove-2.1.0 velocity-1.6.4 wct-1.5.2
weka-3.6.6‡ xalan-2.7.1 xerces-2.10.0 xmojo-5.0.0

Figure 2. Systems used from Qualitas Corpus release 20120401. Systems
for which multiple versions were analysed are indicated by‡.

A. Replication Study

As with the original CMCD implementation, our imple-
mentation was also successful at detecting clones for all 16
of Roy et al.’s scenarios. We also ran our implementation on
the JDK 1.6 update 18 and found 11,391 similar methods
in 2523 clone clusters. The process used 51 minutes using
a 2.7GHz Intel Core i5 CPU.

B. Refinement

From the results of our replication study, we identified
limitations in the original CMCD implementation. About
15% of the candidate pairs identified in our results were false
positives. These false positives were recognised as clones
mainly due to the choice of counting conditions. In Yuan
and Guo’s paper, the 13 counting conditions described were
not sufficient to handle all the cases. For example, switch-
case statements were ignored because the counts of variables
did not reflect the existence of a switch-case statement.

Another issue was that code fragments that contained
only method invocations had empty count matrices, despite
potentially having non-trivial code. We saw a number of
examples of this.

This lead us to change 3 existing conditions (11, 12, and
13 in Table I) to represent the use of variables in loops at
a more fined-grained manner, and added other conditions,
including for method invocation. The new conditions are
listed in Table II.

As well as new counting conditions for variables, we also
apply the same counting conditions to method in a separate
method count matrix. This matrix is normalised in the same

Table II
THE NEW COUNTING CONDITIONS

11 Variable used in first level while loop
12 Variable used in second level while loop
13 Variable used in third level while loop (or deeper)
14 Variable used in first level for loop
15 Variable used in second level for loop
16 Variable used in third level for loop (or deeper)
17 Variable used in switch-case statement
18 Method invoked
19 Method used in if-statement
20 Variable invoked on

manner as described for the existing (variable) count matrix
as described in Section IV-A. With the two count matrices,
the comparison of code fragments is done by determining
the difference between the variable count matrices for each
fragment and the method count matrices for each fragment.
This again raises the issue that the respective sizes of the
matrices could confound the result. For example, if the two
variable count matrices are the same, but the method count
matrices are different, then the size of the method count
matrices might affect the result. Each pair of matrices is
normalised and then the two normalised values are added
together.

The normalisation function is shown in Figure 3. In that
figure, vCM1 and vCM2 are the variable count matrices
for code fragments 1 and 2 respectively, andmCM1 and
mCM2 are the method count matrices;total(*) returns the
sum of all values in the count matrix parameter;dVCM
is the difference for the variable count matrices using the
procedure described in Section IV-A;normVCM is the
difference between the variable count matrices normalised
with respect to the method count matrices.

C. RQ2: Empirical Study

We used our implementation on the systems listed in Fig-
ure 2 and the multiple versions of those systems indicated.
In all, there were 310 different versions, involving 210,392
files and 26,702,561 non-comment non-blank lines of code
(NCLOC). The total time taken was approximately 26 hours.

The results of the empirical study are summarised in
Figure 4. The systems are ordered according to the number
of methods we compared in each system (that is, ignoring
“small” methods and constructors) in order to see if there
are any trends due to some notion of system size. In fact
were the systems ordered according to lines of code, the
order would not be very different.

The figure shows three values: thetotal cloned code, that
is, the percentage of the code (determined by non-comment



 0

 10

 20

 30

 40

 50

 60

jFin_DateM
ath

trove
nekohtm

l

joggplayer

javacc

jgrapht

xm
ojo

jag jrat
m

arauroa

velocity

sunflow

drawswf

sablecc

jgraphpad

jgraph

jhotdraw

ganttproject

wct
m

aven

cobertura

roller
pooka

freem
ind

c_jdbc

struts
heritrix

freecol

xerces

ant
hsqldb

nakedobjects

xalan
jrefactory

cayenne

poi
hibernate

argoum
l

com
piere

weka
jtopen

jruby
gt2

P
ro

po
rt

io
n 

(%
)

System (ordered by number of methods)

Cloned code across systems

Figure 4. Proportion (%) of cloned code across the 43 systemsin the study. The combined height of a bar is the proportion ofcode that appears in a
clone cluster. The height of the dark grey bars shows the sizeof the “original” code that has been cloned.

non-blank lines of code — NCLOC) that appears in a clone
cluster. The light grey shows the proportion of code that is
clonednot counting the “original” that was cloned and the
dark grey is the size of theoriginal code that was cloned.

We show the total because we believe that that is what
other studies report (although this is generally not stated) and
we want to compare with them. However, we also believe
that it is worthwhile seeing the size of the code that is cloned.
If two systems have (for example) 10% total cloned code,
but in one the original is 1% and the other it is 5%, then this
difference is worth noting. Note that we do not really know
which method was the original and which was cloned, but
as they are all similar we can pick one as a representative
(hence the use of quotes above).

The ranges of the values are: total 6.5% (nekohtml) –
59.5% (cobertura) with an average of 17% (sunflow),
original 2.3% (jrat) – 11.8% (cobertura) with an
average of 5.3% (poi), and cloned 3.8% (nekohtml) –
47.8% (cobertura) with an average of 11.7% (pooka).
The medians are: total — 14.6%, original — 5.3%, and
cloned — 10.0%, all by the systempoi.

While there seems to be a slight trend of increasing cloned
code with system size, the largest system (gt2) has 446,863
NCLOC and 13,174 methods, which is much bigger than
the second largest,jruby, with 160,360 NCLOC and 7646
methods, and yet the amount of cloned code is less than

many other systems (but see Section VI-B).

We examined the outliers, and found that a large pro-
portion of generated code were included in these systems.
Due to the nature of generated code, they could be similar
or identical and therefore recognised as code clones by the
clone detector. With the 3 top outliers (trove, sablecc,
and cobertura) removed, the largest values are: total
cloned 27.3%, original 8.3%, cloned 20.9%.

The process we used to determine the threshold value (the
data is shown in Figure 1) also provides us with the means
to estimate our false positive and false negative rates. For
this study, we used a threshold value of 45. Those candidate
clones with a difference value below the threshold (and thus
reported by our tool as clones) that we manually classified
as “similar” or “not clone” were classified as false positives,
and those with a difference value above the threshold (that is,
reported as not clones) but classified as “clone” or “modified
clone” were classified as false negatives. Based on this, we
had a false positive rate of 14.8% and false negative rate of
6.7%. We do note that all of the false positive method pairs
found contained structurally similar code.

In addition to detecting clones in the latest version of the
software systems in the Qualitas Corpus, different versions
of software systems were also analysed. The results are
shown in Figure 5.



Figure 5. Study results showing the percentage of code clones across different versions of software systems

VI. D ISCUSSION

A. RQ1: Replication

The CPU time used between original implementation and
our implementation was of the same order (our hardware
is somewhat faster). However, the number of clones found
was significantly different. Some of the clone pairs we
detected were manually reviewed to assess the correctness
of the result. A large proportion the clone pairs we found
were the result of generated code. These generated code
fragments were very similar to each other and therefore
detected as code clones. We suspect that these methods were
not considered in the original paper.

Yuan and Guo indicated that their implementation had
a very low false positive rate, but did not provide any
information on the false negative rate. Often there is a trade-
off between false positives and false negatives, and so it is
possible that their false negative rate was quite high. Since
we had to develop our own normalisation and false positive
elimination steps, it is possible that our false negative rate
is not as high as the original. This might also explain why
we found so many more candidate clone pairs.

Another possible source of variation was that it was not
clear exactly which classes were examined in the original
study, since Yuan and Guo analysed bytecode and we
analysed source code.

While we did not get exactly the results reported by Yuan
and Guo, they are close enough for us to conclude that the
CMCD technique is as good as they claim. Furthermore, by
manually reviewing detected clone pairs, there are clearly

opportunities for improvement.

B. RQ2: Empirical Study

The smallest amount of cloned code we saw was 3.8%
in nekohtml (6.5% if the original is included), which is the
second smallest system (6,625 NCLOC and 185 methods)
we analysed, meaning that the absolute amount of cloned
code was also fairly small (421 NCLOC cloned code).
Given that half of the systems we analysed (all larger
than nekohtml) have 10% or more (14.6% if the original
is included) points to non-trivial amounts of cloned code
in open source Java systems. This is consistent with the
findings of other studies.

Over the life-time of a system, according to Figure 5 there
is again possibly a slight increasing trend over time for the
systems that we have 20 or more versions for, however, as
systems also grow over time, this might be further evidence
of a relationship between system size and amount of cloning.
As we gather more data, we may be able to confirm this
relationship.

It is worth noting that our implementation, like the orig-
inal, has very good performance. We were able to analyse
nearly 27 million NCLOC in about 26 hours on commodity
hardware.

C. Threats to Validity

As with other clone detection research, a possible threat
to the validity of our results is what we consider to be a
clone. We have mitigated this threat by requiring that two



people (the first two authors) agree on the designation (as
described in Section IV) of each candidate pair.

Another possible threat is the correctness of our imple-
mentation. In particular, there is the possibility that some
peculiar combination of circumstances will be mis-reported
by our implementation. We have mitigated this through
many hours of manual review of candidate clone pairs.

One issue with comparing our results with others is that
fact that we detect clones at the method level of granularity.
This means that if the code in one method is completely
copied to another method, but that other method also has at
least as much code again added, we will not detect the use of
cloning. We do not doubt that this happens, but our manual
reviews found few such examples, leading us to conclude
the impact on our results is small.

We have provided false positive and false negative rates
for our results. These are based on our manual reviews, as
supported by our tool, and so are necessarily a small subset
of the total code base we analysed. While we cannot rule
out missing incorrectly classified clone pairs, the nature of
the CMCD technique is such that we believe our results are
likely to apply generally.

Finally, we note that our results are generally in agreement
with other studies, which gives us good confidence in them.

VII. C ONCLUSIONS

We have examined a technique for clone detection pro-
posed by Yuan and Guo [7] and found that generally their
claims for its performance and accuracy are warranted. We
have improved the original technique, in particular by adding
more counting conditions and a separate method count
matrix. Applying our improved technique to 43 systems we
found that 1 in 2 systems had at least 10% cloned code, not
counting the original.

In future work, we would like to improve the error bounds
on the accuracy of our implementation and adapt it to work
on sub-method granularity. While our empirical study is one
of the largest performed, it was not done on the whole of the
Qualitas Corpus due to project constraints. We hope carry
out an even larger study. We would also like to do the same
for other programming languages.

There is still much to be discovered about code clones.
Based on our findings reported here, we believe the CMCD
technique provides a very promising means to support such
discovery.

REFERENCES

[1] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
“Do code clones matter?” in31st International Conference
on Software Engineering. IEEE, 2009, pp. 485–495.

[2] J. Li and M. D. Ernst, “CBCD: Cloned buggy code detector,”
in 2012 34th International Conference on Software Engineer-
ing (ICSE). IEEE, Jun. 2012, pp. 310–320.

[3] B. Baker, “On finding duplication and near-duplication in
large software systems,” in. . . , 1995., Proceedings of 2nd
Working Conference on, Jul. 1995, p. 86.

[4] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier,
“Clone detection using abstract syntax trees,” inProceedings.
International Conference on Software Maintenance (Cat. No.
98CB36272). IEEE Comput. Soc, 1998, pp. 368–377.

[5] R. Falke, P. Frenzel, and R. Koschke, “Empirical evaluation of
clone detection using syntax suffix trees,”Empirical Software
Engineering, vol. 13, no. 6, pp. 601–643, Jul. 2008.

[6] N. Schwarz, M. Lungu, and R. Robbes, “On how often code is
cloned across repositories,” in2012 34th International Con-
ference on Software Engineering New Ideas and Emerging
Results Track (ICSE). Ieee, Jun. 2012, pp. 1289–1292.

[7] Y. Yuan and Y. Guo, “CMCD: Count Matrix Based Code
Clone Detection,” in2011 18th Asia-Pacific Software Engi-
neering Conference. IEEE, Dec. 2011, pp. 250–257.

[8] K. Popper,THE LOGIC or SCIENTIFIC DISCOVERY. Rout-
ledge, 1968.

[9] C. Drummond, “Replicability is not reproducibility: nor is it
good science,” inEvaluation Methods for Machine Learning
ICML Workshop, no. 2005, 2009, pp. 2005–2008.

[10] N. Cartwright, “Replicability, reproducibility, androbustness:
Comments on Harry Collins,”History of Political Economy,
1991.

[11] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,”Science of Computer Programming,
vol. 74, no. 7, pp. 470–495, May 2009.

[12] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and Evaluation of Clone Detection Tools,”IEEE
Transactions on Software Engineering, vol. 33, no. 9, pp.
577–591, Sep. 2007.

[13] J. Johnson, “Substring matching for clone detection and
change tracking,” inProceedings International Conference on
Software Maintenance ICSM-94. IEEE Comput. Soc. Press,
1994, pp. 120–126.

[14] B. S. Baker, “Finding Clones with Dup: Analysis of an
Experiment,” IEEE Transactions on Software Engineering,
vol. 33, no. 9, pp. 608–621, Sep. 2007.

[15] R. Komondoor and S. Horwitz, “Using slicing to identify
duplication in source code,” in8th International Symposium
on Static Analysis (SAS), Jul. 2001, pp. 40–56.

[16] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the
automatic detection of function clones in a software system
using metrics,” inProceedings of International Conference on
Software Maintenance ICSM-96. IEEE, 1996, pp. 244–253.

[17] K. Kontogiannis, “Evaluation experiments on the detection of
programming patterns using software metrics,” inProceed-
ings of the Fourth Working Conference on Reverse Engineer-
ing. IEEE Comput. Soc, 1997, pp. 44–54.

[18] N. Davey, P. Barson, S. Field, and R. Frank, “The develop-
ment of a software clone detector,”International Journal of
Applied Software Technology, vol. 3/4, no. 1, pp. 219–236,
1995.

[19] R. Vallée-Rai, P. Co, and E. Gagnon, “Soot-a Java bytecode
optimization framework,” inConference on the Centre for
Advanced Studies on Collaborative Research (CASCON),
Nov. 1999, p. 13.

[20] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas Corpus: A Curated
Collection of Java Code for Empirical Studies,”2010 Asia
Pacific Software Engineering Conference, pp. 336–345, Nov.
2010.


