A Replication and Reproduction of Code Clone Detection Stugs

Xiliang Chen

The University of Auckland
Auckland, New Zealand
xchel85@aucklanduni.ac.nz

Abstract—Code clones, fragments of code that are similar
in some way, are regarded as costly. In order to understand
the level of threat and opportunity of clones, we need to be
able to efficiently detect clones in existing code. Recentlg new
clone detection technique, CMCD, has been proposed. Our gba
is to evaluate it and, if possible, improve on the original. V&
replicate the original study to evaluate the effectivenesaf basic
CMCD technique, improve it based on our experience with the
replication, and apply it to a 43 open-source Java code from
the Qualitas Corpus. We find the original technique is quite
effective. Applying our improved technique we find that that
1 in 2 systems had at least 10% cloned code, not counting
the original, indicating that cloned code is quite common. V&
believe the CMCD technique provides a very promising means
to support research into code clones.

Keywords-Clone detection; Code Analysis; Empirical Studies

I. INTRODUCTION

Alice Yuchen Wang
Electrical and Computer Engineering Electrical and Computer Engineering
The University of Auckland
Auckland, New Zealand
ywan478@aucklanduni.ac.nz

Ewan Tempero
Computer Science
The University of Auckland
Auckland, New Zealand
e.tempero@auckland.ac.nz

to produce good clone detectors for many languages quite
quickly. If it is as good as it appears, CMCD has very good

potential for significantly increasing the number and size

of empirical studies, thus improving our understanding of

the impact of code clones. In this paper, we investigate
the usefulness of CMCD. Specifically, we present an im-

proved version of the technique, discuss its effectiveness
and present the results of using it on a large corpus of Java
code.

In scientific study, it is not enough to observe something
once to be convinced of the validity of some theory, the
observations must beepeated As Popper said, “We do
not take even our own observations quite seriously, or
accept them as scientific observations, until we have refdeat
and tested them.” [8] While there have been a number of
empirical studies reporting the degree to which code clones

Code clones, fragments of code that are similar in Som@xist, various issues that exist with those studies meam it i

way, are regarded as costly[1], [2]. There is some evidenc

got obvious how the results compare with each other, and

that the number of clones in any given system can be norgenerally make it hard for the research community to claim

trivial (e.g. [3], [4], [5], [1], [6]). This means, that if ate

any certainty regarding how much cloning exists. Much

clones do represent an unnecessary cost, then their eodster|"0re repetition is needed, and our work is another step in
is both a threat to the software quality and an opportunity fo thiS Process.

improvement. In order to understand the level of threat and \ynat constitutes a useful repetition is a matter of some de-

opportunity, we need to be able to detect clones in existing, e [9], however in this paper we consider what Cartwright
code. If there are few code clones, then their cost is not sp.ars to aseplicability — doing the same experiment again

important. In order to understand the cost associated with

and reproducibility — doing a new experiment [10]. In

clones, we need to_be z_ible to identify clones and determinﬁ\,ﬂS paper we replicate (as much as possible) the study by
the cost due to their existence. _ . Yuan and Guo to demonstrate the validity of CMCD and we
To detect clones, we need a means that is both efficientyemnt 1o reproduce the results of various empirical studi

and effective. If the techniques used to detect clones havg,qertaken to determine the degree to which code clones
poor accuracy, then effort will be wasted identifying false oyist in Java code.

positives, and the results will be uncertain due to the
unknown false negatives. If the clone detection techniques The rest of the paper is organised as follows. In the next
are inefficient, it will be difficult to gather enough data te b section we present some of the literature on empirical studi
useful. Many existing clone detection techniques are quit®f code clones to determine what has been established so far.
expensive, particularly in time, or trade off time for acacy. In section Ill, we summarise the original CMCD technique.
Recently, Yuan and Guo demonstrated a new techniquén section IV, we describe the modifications we have made
CMCD (for Count Matrix Clone Detection), for detecting to CMCD, and how we carried out the replication and
clones that is very efficient and appears quite effective [7]reproduction studies. We present our results in section V
The basic idea is language-independent and is relativeland discuss them in section VI. Finally we present our
straight-forward to implement, so that it may be possibleconclusions and discussion future work.

Il. BACKGROUND AND RELATED WORK code into parse trees or abstract syntax trees (ASTs). Com-
Sogarison is then done between the trees for commonality,
ciated with clone detection and give an overview of cIonepOSSIny using structural metrics. The work by Baxter et

detection related research. The literature in clone detect aI.S|s perk;_aps the bers]t known ?fchese approachle S.[4]‘ hich
research is quite extensive, and so we necessarily can onTI}/ emantic approaches use static program analysis, whic

In this section we introduce the concepts generally as

give a sample here. Roy et al. provide a good survey [11 oes a more sophisticated comparison than just at the syntax

and we use their terminology below. We detail only the work evel. One tschquue that is uhsegssGto regrtisent thel‘ COdtT] ats
that is directly relevant to ours. a program dependency graph () and then analyse that.

A code fragments any sequence of code lines that canAn example of this approach uses backward slicing [15].

be any granularity, such as a complete method definition or Roy et al. descn.be 4sceqar|osg|V|ng e>.<amples of
sequence of statements inside an if-statement [12jloAe each o_f the categories described above, with further sub-
pair is defined by having two code fragments that are simila°ceNaros for each category, a total of 16 examples. They

by some given definition of similarity. When more than two :Eggeelvglgi;? Ir:;)re r(t)r\]/?dnin‘lob;(talf T;?églrjisritévrlit: (;?Slzzg: ;O
fragments are similar, they form @one clusteror clone pies, p 9

group. There are two main types of similarity between codé starting point) for what might consitute a clone, and a

fragments: textual similarity and semantic similarity. aw qomprehenswe summary of that the state-of-the-art at that
LoD . time could handle.

fragments have textual similarity when the text they contai As mentioned in the introduction, our work is based on the

is matches to a large degree. This might be the consequenEﬁwCD techniaue develobed by Yi ém and Guo [71. which we

of copying and pasting one fragment to the other, perhaps qu velop y Yu uo [7], which w

with minor modifications. Two fragments are semanticallyWIII ;jeta;l n theiﬁne>|<lt sltefctlllor:n'[hﬁ techtnlqure E a S)tmTlaCt'
similar if they have similar functionality, but may have approach, specitically it talis in o the category =oy €t all ¢

completely different text. Clone types can be categorista i mgglscusrfni:ctjsacm[\oeagggz f%er:sgg’JZ;Seoipep;?ﬁgfs nr::t-
four types based on both textual and semantic similarities. 9 > Using o
. rics. The value of the measurements indicate how similar the

(taken from Roy et al. [11]): o
) o _ code fragments are. One example of this is by Mayrand et al.
Type-1: Idt_ant|cal code fragments except for variations iN[16] who gather measurements from a number of metrics,
. whitespace, layout and comments. _such as different characteristics of the layout of the code,
Type-2: Syntactically identical fragments except for vari n,mper and type of statement, and characteristics of dontro
ations in identifiers, literals, types, whitespace, fio\ such as number of decisions, average nesting level, and

layout and comments. o number of exits. Another example is by Kontogiannis [17],
Type-3: Copied fragments with further modifications such\yho ses more common metrics such as Fan-in, Fan-out,
as changed, added or removed statements, in adjq Cyclomatic Complexity Number.

dition to variations in identifiers, literals, types, once measurements are produced, the existence of clones
whitespace, layout and comments. is determined by the similarity of the measurements. The
Type-4: Two or more code fragments that perform the;omparison of measurements may be done in different ways,
same computation but are implemented by differeniyepending on who the measurements look like. For example,
syntactic variants. Kontogiannis groups the measurements into 4 categories,
Most of the clone detection techniques can be summarisegind then compares each category separately. The results of
into four main categories: textual, lexical, syntactic andthe 4 comparisons are then used to produce an ordinal scale
semantic [11]. measurement capturing how different (or similar) two code
Textual approaches compare the source code with little ofragments are. Another example is by Davey et al., who use
no transformation. In most cases raw source code is used di self organising neural net to do the comparisons [18].
rectly in the clone detection process. Such approaches mustWith all the variations in techniques, the question that
cope with variation of all kinds, including in whitespacen A naturally arises is which is the best? Unfortunately there i
early such approach was described by Johnson [13]. no clear answer, not only because the answer depends on
Lexical approaches transform the source code into ahe reason for detecting clones, but also because there has
sequence of lexical tokens using compiler-style lexicallan been insufficient comparison between the techniques.
ysis. Comparison is then done between sequences of tokensFor an example on how context might affect which
to identify common subsequences. These approaches easgyality attributes of the clone detection technique werdesi
deal with variation in whitespace, layout, and commentsconsider plagiarism detection in student assignmentsi$n t
Also, variations in identifiers or literals can also be dealtcontext, we would probably do this off-line (as a batch
with. An example of this approach was described by Bakeprocess), we might expect the size of the inputs to be
[14]. relatively small (hundreds, or perhaps a few thousandsline
Syntactic approaches use a parser to convert the sourcd code), and we would likely be willing to accept missing

some cases (false negatives) in order to ensure not making There does not appear to have been any systematic large-
any false accusations (false positives). On the other handgcale studies to determine the degree to which code clones
to support a code review function in an IDE, we would exist. However, most presentations of new clone detectors
want real-time information of possibly a large code baseprovide data from their application that indicates thahel®

but would accept a reasonable degree of false positives arate relatively common.

false negatives. These two examples represent a tradé-off o For example, in an early study, Baker found on the order
preferences in performance versus accuracy. Other trfisle-o of 19% of the X Window System [3] are either Type-1 or
include what constitutes a clone, for example only reqgirin Type-2 clones. Baxter et al. looked at 19 subsystems of
detection of Type 1 and Type 2 clones, and what granularity process-control system with 400 KSLOC of C code [4].
of code fragments are to be considered, such as comparirfitheir results indicated that on average 12.7% of code was
only subroutines or comparing blocks. cloned, with at least two subsystems having over 28%.

As an example of other uses of clone detectors, Li Juergens et al. found 300 or more clone groups (2 or more
and Ernst examined the degree to which code clones alsmde fragments that are clones of each other) in 4 of the 5
contained duplicated buggy code [2]. Their detector usedystems. They do not indicate what proportion of the overall
a semantic approach based on PDGs. They examined cdde base these groups represent, nevertheless it must be
systems (Git, Linux kernel, and PostgreSQL). Using thenon-trivial.
systems’ bug reports, they identified the code fragments While Bellon et al.'s goal was to compare detectors, they
where the bugs occurred, and then tried to find clones oihclude information about candidates reported by the tools
those fragments. They compared their system against 4 othére size of code fragments identified as candidates, and
clone detectors. Their system performed as well or betteinformation on accuracy in their results. While it is difficu
than the others in both accuracy and performance. to determine the proportion of cloned code, again it is clear

There have been some comparisons of different techthat it must be non-trivial.
niques. Bellon et al. compared 6 clone detectors that used Schwarz et al. examine the repositories of Squeaksource, a
different approaches over € and 4 Java systems with repository in the Smalltalk ecosystem [6]. They found 14.5%
respect to their accuracy and performance [12]. While theref all methods strings (560K different methods in 74K
was no clear winner, they noted that the AST-based apelasses) were present in at least two distinct repositories
proaches tended to have higher precision (fewer false posi- In summary, various studies consistently report that code
tives) but were also longer execution time, whereas tokenelones exist to a non-trivial degree, with many measurement
based approaches had higher recall (fewer false negatives) more than 10% being reported.
but were faster. They commented that “if idea from the
token-based techniques could be made to work on ASTs,
we would be able to find syntactic clones with less effort.” In order to make our contribution clear a good under-

Falke et al. did a follow up study using the same infras-standing of the original CMCD technique is needed, which
tructure as by Bellon et al. to examine the quality of clonewe provide below. More details are available in the original
detectors based on suffix trees [5]. They found that usingublication [7]. The modifications we made are described in
suffix trees was faster than the standard AST matching, buhe next section.
with varying recall and precision. The CMCD technique determines the similarity between

Two important questions relating to clone detection re-two code fragments by modelling each wittcaunt matrix
search are: Is the belief that clones are a problem correcind comparing the count matrices. A count matrix is made
and; Are there enough clones in real code to matter®ip of a set ofcount vectorsin the original CMCD, there is
Juergens et al. addressed the first question by developirane count vector for each variable that appears in the code
a new clone detector and applying it to 5 projects, 4 from 2fragment. The values in a count vector come from a set
companies (3 in C#, 1 in Cobol), and one open source (Javaf counting conditionghat are applied to the variable that
[1]. They were particularly interested in what they called vector represents. The counting conditions represent how a
inconsistentclones, code fragments that differ by more variable is “used”. The intuition is, if two code fragments a
than just simple changes that apply to the whole fragmenindeed clones, then a variable in one fragment will have a
such as renaming variables (effectively Type-2 clonesgyTh counterpart in the other fragment that is used in very simila
presented identified inconsistent clones to the develagfers ways, so the count vectors will be very similar. Also, most
the systems, and from the developers determined whetheariables in one fragment will have counterparts in the othe
the inconsistency was intentional or not, and whether thdragment, so the count matrices will be very similar. If, on
clones were faulty or not. From this they concluded thatthe other hand, the fragments are very different, then there
inconsistent clones are a major source of faults. The esulis a high probability that many variables in one fragment
by Li and Ernst also suggest that clones are a problem, bwill have no obvious counterpart in the other, so the count
finding clones that contain the same bugs [2]. matrices will look different.

1. ORIGINAL CMCD TECHNIQUE

Table |

THE ORIGINAL COUNTING CONDITIONS[7] measurement, a false positive elimination step is_applied
using heuristics. The authors do not give any details as to
1 Used what heuristics they use.
g ,\Aﬂ‘i‘l’t‘fgié’é Z‘;tg{\f}gteef The same idea can be used to compare two sets of code
4 Invoked as parameter fragments — a weighted bipartite graph can be constructed
5 Inan if-statement where a vertex is the count matrix for a code fragment,
? gifﬁ]r;g‘”ay subscript and edges are between vertices from one set to the other
8 Defined by add or subtract operation weighted by the similarity score between the corresponding
?o Be;!neg gy multiply or dIVIdehQF;]eLatlon o code fragments. Again, maximum weighted bipartite match-
efine: y an expression wnicl as constants in it H H H
11 In a third-level loop (or deepen) ing can be used to determine how similar the two sets are.
12 In a second-level loop In this way two classes can be compared for similarity by
13 In afirst-level loop treating each method as a code fragment and applying the

technique as described above.
Yuan and Guo evaluated their CMCD technique by using

As the Yuan and Guo noted in the original publication, it in three different ways. First, they applied it to the 1@&sc
exactly what constitutes a “use” is maybe not as important agarios described by Roy et al., demonstrating that it detect
applying the counting conditions consistently. Neverel all 16 cases. They then applied it to 29 student medium-
the counting conditions do need to indicate some reasonablsized project submissions (7 KLOC — 38 KLOC, 585 KLOC
notion of “use”. The original counting conditions are shownin total). The processing took 123 minutes on relatively
in Table I. These counting conditions all are uses of vaeigbl standard hardware and they found 2 clone clusters. Manual
that are familiar to any programmer. Clearly other countingexamination concluded that would have been difficult to
conditions are possible as the authors acknowledge, but jfentify the clusters through manual inspection. Despite t
is not obvious whether the extra cost of adding more willfact that all projects implemented the same functionality,
significantly change the outcome. We return to this point inthey did not find any false positives.
the next section. The third evaluation method was to analyse JDK 1.68)

Two count vectors are compared by computing the nor{about 2 MLOC). They compared every pair of methods in
malised distance between them. The original technique usehis code base, ignoring very small methods such as getters
euclidean distance and normalises (roughly) by dividing byand setters. The processing took 163 minutes and found
the vector lengths (see paper for full details). The resglti 786 similar methods over 174 clusters. One of the clusters
distance is in the rangl®..1], where 1 means identical. included at least one instance that appeared to contain a

After computing the count vectors for each variable forfault.
each code fragment, the rgsqltin_g cour_1t matriges r)eed to IV. METHODOLOGY
be compared to determine similarity. An issue arises in that))
while each variable in one fragment may have a very similar "€ research questions we would like to answer are:
counterpart in the other fragment, this may not be obvious RQ1 Is the CMCD technique as effective as its authors
if the order of the count vectors is different in the count claim and can it be improved?
matrices, that is, it is not enough to just compare the first RQ2 How much code is created through cloning?
row of one matrix with the first row of the other, and so The basic steps we follow are:
on. CMCD resolves this issue using maximum weighted 1) Implement the CMCD technique as close as practical
bipartite matching as follows. to the original.

Each row in the two matrices being compared is treated 2) Perform two of the three evaluations described in the
as a vertex in a graph, and each vertex from one matrix original paper (see section II).
has an edge to every vertex in the other matrix. Each edge 3) Based on the results of, and experience gained by, per-
is weighted by the distance between the two respective forming the previous step, refine our implementation.
count vectors. This results in a weighted bipartite graph. 4) Evaluate the effectiveness of the refinement, returning
The maximum weighted bipartite matching of this graph to step 3 if the results indicate the need for, or
is then a pairing of count vector from one matrix with a possibility of, improvement.
count vector in the other matrix that maximises the sum of 5) Apply the refined implementation to a large body of
the count vector distances. This sum is then the measure of code, returning to step 3 if the results indicate the need
similarity between the code fragments. for, or possibility of, improvement.

The similarity value may also be normalised, to accountSome of these steps are elaborate further below.
for comparing code fragments of different sizes, or have a There are two details we need to clarify: what definition
different number of variables. Also, in case it is possibleof clone we are using and what level of granularity of clone
for two quite different fragments to get a high similarity we will detect.

As others have noted, in particular Roy et al. [11], theretwo large methods might be the same as for two small
is no agreed upon evaluation criteria as to when two codenethods, which would mean the large methods are much
fragments are clones. We use the same intuition as othersjore similar than the two small methods, and so some form
namely that two code fragments are clones if one couldf normalisation is needed. Also, the values of the counts ca
“reasonably” have resulted by copying and pasting thémpact the measurement. The difference between two large
other and making “minor” changes. While this introducescounts for a giving counting condition can be the same as
a degree of subjectivity, we follow Yuan and Guo and usefor two small counts, again indicating that the former is in
the scenarios proposed by Roy et al., which provides somfact more similar than the latter.
means of comparison with other work. We discuss this Unfortunately, the original paper does not describe how
further in Section VI-C. normalisation was performed, so we have to develop our

We also follow the original CMCD technique, which own. After some investigation, we concluded the best nor-
compares code fragments that are methods, that is, it doesalisation was achieved by summing the values for the
not detect clones that are smaller than methods. We choosenaller count matrix, and dividing the raw difference mea-
to do so as one of our goals is to replicate Yuan and Guo'surement by that sum.
study. How this technique might be applied to sub-method The false positive clone detection method mentioned in
clones is a topic for future work. the original paper was also not described and thus we have
come up with our own false positive detection method. As
cloned fragments of code are similar or the same as the

As Yuan and Guo used Java as their target language, wariginal fragment of code, we used a textual approach to
choose to do the same. Their implementation determined théiscard clone pairs detected that had over 50% differences
count matrices based on the Jimple representation of tlee Jain text. This difference was computed after spaces and
source, which is a 3-address code representation producedmments had been removed.
using the SOOT framework [19]. We had a concern about To improve performance, we classified method pairs by
this decision. comparing the normalised difference between the two matri-

The Jimple representation is necessarily different froen th ces to a predetermined threshold value. The threshold value
original source code, and furthermore is a transformationwas determined by analysing the distribution of difference
of the compiled code (bytecode) rather than the originalvalues of clone pairs. This process consisted of:
source code. Yuan and Guo argue that these transformations1) Detecting all possible clone pairs for a selected soft-
have little effect on the results. Our concern is that the ware system and calculating the difference values.
two transformations may mean that slight differences in the 2) Manually reviewing each method pair found and clas-
source code may result in more significant differences in sifying it into one of the categories: clone, modified
the Jimple representation. For example, information could clone, similar but not clone, and not clone. (Also see
be lost during compilation which may affect the level of below.)
accuracy, especially if optimisation techniques are used. 3) Plotting a chart showing the distribution of different
Also, the transformation to Jimple involves introductioin o type of method pairs.
temporary variables, and slight differences in the souockec 4) Determine the threshold value based on distribution.
may result in different temporaries, potentially resigtim Freecol version 0.8.0 was used for the analysis. The chart
a more significant change at the Jimple representation thag shown in figure 1. From the chart, the default threshold
exists in the original source. value was chosen to be 45 to provide a balance between

If we are right, then we would get better results dealingfalse positive and false negatives.
with the source code directly. Furthermore, if Yuan and Guo Very small methods, such as getters and setters, are likely
are right, it should not matter if our implementation uses ato look very similar. Also, even if they are created through
different technique to determine the count matrices. cloning, identifying them as such is not very useful because

Consequently we decided to base our implementation othey are so small. The original technique chose to ignore
a parser for Java source code. We used ANTLR (antlr.orggmall methods for this reason, but did not specify how they
to create the parser. This produces an Abstract Syntaiientified such methods. In our implementation, the number
Tree (AST), which is then traversed, applying the countingof nodes in AST is used as the size of the method. A method
conditions as appropriate to each vertex. The count matricds considered small if its size is less than a certain value.
are created and compared as in the original. The number of lines of code was not used as the size of the

Unlike the original technique, rather than measure similar method because it did not reflect the complexity of the code
ity between methods (smaller values means less similar), wagments and it may vary significantly depending on the
measuredlifferencegsmaller values means more similar). coding style. By looking at small methods such as getters

As noted in Section lll, the meaning of the measurementand setters, we determined that an AST with 50 or fewer
can depend on the method size. The measurement farodes could be reasonably classified as small.

A. CMCD implementation

changes such as differences variable types or variablesiame

80 - “Modified Clone” is the same as “clone” but allowing a few

o 70| 7 Mvog'ii’!ggv E | addition or del_et?on of statements. “Similar but not clome”

g | Nooimilar — used forlclgssyfylng code clones where at a glance, they have
5 lots of S|mllgr|t|es mlterms of structure and Sl_Jb fragments
£ 50 | of code, but is modified enough to not be considered clones.
€ 40 “Not clones” is where the method pair is clearly not a clone.
“§ 20 - ¥ This classification data can be saved for analysis and future
é 20l . I clone detections, so that there is no need to reclassifyeslon
ENNI l l j ‘T when the detection process is rerun with different input

[l[l [l l Ihl LH parameters.
0

Clone pairs can be sorted based on any of the character-
istics of the pairs (such as the value of the pre-normalised
difference between a pair). This aids the identification of
clone patterns in our results by ordering the results tonallo
Figure 1. Showing the trade-off in candidate pair clasdificaaccording ~ for easy access to groups of data, and visualisation of
to difference choices of threshold value. The 0-3 value leemliruncated correlation between data types. For example, clone pairs ca
(from 179) for presentation purposes. be sorted by clone classification and then by the difference
value of the method pair to determine if there is a correfatio

Constructors are also ignored, as constructor clones are 1€ tool we developed allows us to identify false positives

not very interesting. In addition, it is easy to get two (candidate pairs that are not in fact clones). Identifyaigd

constructors with the same variable count in a large systenfi€gatives (clone pairs that are never offered as candjdates

QB By &, X e Y % D Y W B B T B Y % S
v Ve N0 Tv, R, G, RN, TR, R, R, R, R, 9 R, R W R R
PN e Y % Yo S S 6

>
25, Ry B, Q 2
D B B D %

Difference value

and therefore they will introduce false positives. is more challenging, however our tool also supports this
o because it allows us to easily change various parameters
B. Replication to the technique, in particular the thresholds. The choice

We applied our implementation of the CMCD techniqueOf thresholds affects the level of false positives and false
to the same 16 scenarios used by Yuan and Guo, and al$®gatives — the higher the threshold the more false positive
to JDK 1.6.018. We did not have access to the studentbut the fewer false negatives. If we want to determine the
submissions and so did not replicate that part of their studydegree of false negatives for a given threshioldie can set
the threshold to a valuemuch larger thart, and examine
those candidate pairs that are clones reported at level

The original paper hinted that other counting conditionsthat are not reported at level These pairs are then false
might be useful, so we planned from the beginning tonegatives at level.
support adding new conditions. That meant we also needed |dentifying false negatives, as well as allowing us to
some way to select different conditions, and some way tgrovide error bounds on our results, also provides support f
show the results. We also needed to be able to vary variougfining the technique. By examining false negatives, we can
parameters, such as the choice of thresholds (see below). T@entify new counting conditions that may have the poténtia
support evaluation, we quickly learnt that it was importanttg detect such cases.
to not just see the list of candidate pairs, but to also shaw th
contents of the pair, highlighting the differences betwden D. Empirical Study
two fragments. By examining candidate pairs in this way, we
could then efficiently determine the accuracy of the chofce o
parameters by determining by manual inspection whether th

C. Evaluation and Refinement

Our empirical study was carried out on 43 open
source Java systems from the Qualitas Corpus, release
20120401[20]. We did both a breadth (different systems)

candidate pair was indeed a clone pair. Finally, we neede o . .
; . and a longitudinal (multiple versions of the same system)
the means to record the result of the manual inspection. ; g :
study. The systems we used are listed in Figure 2, with

To this end, we developed a tool that can apply thegose used for the longitudinal study marked hySee the

foundation CMCD technique to any code base and tha ; ; . :
; : . o ualitas Corpus website (qualitascorpus.com) for detdils
supports choosing different sets of counting conditions) o
the systems studied, such has which files are analysed.

different parameter values, reporting candidate clonespai
highlighting the differences between a selected candidate
pair, and recording the result of the manual inspection.

Candidate pairs are classified as “clone”, “modified In this section, we present the results of the differentpart
clone”, “similar but not clone” or “not clone”. “Clone” of our study. Their interpretation and consequences will be
is where the method pair is clearly identical with minor discussed in the next section.

V. RESULTS

normVCM=

dVCMtotal(vCM1)+ total(vCM2)

total(vCM1)+ total(vCM2)+ total(mCM1)+ total(mCM2)

Figure 3.

ant-1.8.0 argouml-0.34 c_jdbc-2.0.2 cayenne-3.0.1
cobertura-1.9.4.1 compiere-330 drawswf-1.2.9 freeco

Normalising difference between variable and wettbount matrices for two code fragments.

Table Il
THE NEW COUNTING CONDITIONS

. . 11 Variable used in first level while loop
0.10.3 freemind-0.9.6¢ ganttproject-2.0.9 gt2-2.7- 12 Variable used in second level while loop
M3 heritrix-1.14.4 hibernate-4.0{1 hsqldb-2.0.0 13 Variable used in third level while loop (or deeper)
- } . . _ . _ 14 Variable used in first level for loop
JFm—DateMath R1.0.1 jag 6':_" javacc 5'0_ igraph 15 \Variable used in second level for loop
5.13.0.0 jgraphpad-5.10.0.2 jgrapht-0.8.1 jhotdrawy- 16 Variable used in third level for loop (or deeper)
6.0.1; joggplayer-1.1.4s jrat-0.6 jrefactory-2.9.19 ig \’\;ariﬁbljuseg i(f; switch-case statement
H H ethod invoke
jruby-1.5.2 jtopen-7.1 marauroa-3.8.1 maven-3.0 19 Method used in if-statement

nakedobjects-4.0.0 nekohtml-1.9.14 poi-3.6 pooka- 2o
3.0-080505 roller-4.0.1 sablecc-3.2 struts-2.2.1

sunflow-0.07.2 trove-2.1.0 velocity-1.6.4 wct-1.5,2
weka-3.6.6 xalan-2.7.1 xerces-2.10.0 xmojo-5.0.0

Variable invoked on

manner as described for the existing (variable) count matri
as described in Section IV-A. With the two count matrices,
the comparison of code fragments is done by determining
the difference between the variable count matrices for each
fragment and the method count matrices for each fragment.
This again raises the issue that the respective sizes of the
matrices could confound the result. For example, if the two
variable count matrices are the same, but the method count
As with the original CMCD implementation, our imple- matrices are different, then the size of the method count
mentation was also successful at detecting clones for all 1fatrices might affect the result. Each pair of matrices is
of Roy et al.'s scenarios. We also ran our implementation omormalised and then the two normalised values are added
the JDK 1.6 update 18 and found 11,391 similar methodsogether.
in 2523 clone clusters. The process used 51 minutes using The normalisation function is shown in Figure 3. In that
a 2.7GHz Intel Core i5 CPU. figure, vCM1 and vCM2 are the variable count matrices
for code fragments 1 and 2 respectively, an€M1 and
mCM2 are the method count matricesital(*) returns the
From the results of our replication study, we identifiedsym of all values in the count matrix parametdy/CM
limitations in the original CMCD implementation. About js the difference for the variable count matrices using the
15% of the candidate pairs identified in our results weresfals procedure described in Section IV-AjormVCM is the
positives. These false positives were recognised as clongfiference between the variable count matrices normalised
mainly due to the choice of counting conditions. In Yuanyth respect to the method count matrices.
and Guo’s paper, the 13 counting conditions described were
not sufficient to handle all the cases. For example, switchC. RQ2: Empirical Study
case statements were ignored because the counts of variable We used our implementation on the systems listed in Fig-
did not reflect the existence of a switch-case statement. ure 2 and the multiple versions of those systems indicated.
Another issue was that code fragments that containe¢h all, there were 310 different versions, involving 21239
only method invocations had empty count matrices, despitéiles and 26,702,561 non-comment non-blank lines of code
potentially having non-trivial code. We saw a number of (NCLOC). The total time taken was approximately 26 hours.
examples of this. The results of the empirical study are summarised in
This lead us to change 3 existing conditions (11, 12, andrigure 4. The systems are ordered according to the number
13 in Table I) to represent the use of variables in loops abf methods we compared in each system (that is, ignoring
a more fined-grained manner, and added other conditionssmall” methods and constructors) in order to see if there
including for method invocation. The new conditions areare any trends due to some notion of system size. In fact
listed in Table II. were the systems ordered according to lines of code, the
As well as new counting conditions for variables, we alsoorder would not be very different.
apply the same counting conditions to method in a separate The figure shows three values: tte#al cloned code, that
method count matrix. This matrix is normalised in the sameis, the percentage of the code (determined by non-comment

Figure 2. Systems used from Qualitas Corpus release 2012@48tems
for which multiple versions were analysed are indicatedf by

A. Replication Study

B. Refinement

Cloned code across systems
60

Proportion (%)
w
o

20
10
0
R Lo s o rs e S0 e a0 00 S S et s oo 5o 0 s R0 el o S
R R A B R S N R S M N K A
{H® 570 XA (MR A AKX S, °<,,o-<§°®
0%4;%/%’3% K W’“C‘{%Zi Wy 7y Ty TS0 e R 7
(o)
Q@ O{‘S‘

System (ordered by number of methods)

Figure 4. Proportion (%) of cloned code across the 43 systartise study. The combined height of a bar is the proportiorcaife that appears in a
clone cluster. The height of the dark grey bars shows thedfizke “original” code that has been cloned.

non-blank lines of code — NCLOC) that appears in a clonemany other systems (but see Section VI-B).
cluster. The light grey shows the proportion of code that is

clonednot counting the “original” that was cloned and the
dark grey is the size of theriginal code that was cloned.

We examined the outliers, and found that a large pro-
portion of generated code were included in these systems.

Due to the nature of generated code, they could be similar

We show the total because we believe that that is whah, ijentical and therefore recognised as code clones by the
other studies report (although this is generally not sfeded - |one detector. With the 3 top outliersr(ove, sabl ecc,

we want to compare with them. However, we also believe;ny coper t ur a) removed, the largest values are: total
that it is worthwhile seeing the size of the code thatis atbne 5neq 27.3%, original 8.3%, cloned 20.9%.

If two systems have (for example) 10% total cloned code,

but in one the original is 1% and the other it is 5%, then this The process we used to determine the threshold value (the
difference is worth noting. Note that we do not really know data is shown in Figure 1) also provides us with the means
which method was the original and which was cloned, buto estimate our false positive and false negative rates. For
as they are all similar we can pick one as a representativéis study, we used a threshold value of 45. Those candidate
(hence the use of quotes above). clones with a difference value below the threshold (and thus

The ranges of the values are: total 6.58€Koht i) — reported by our tool as clones) that we manually classified

59.5% Eober t ur a) with an average of 17%s(nf | ow) as “similar” or “not clone” were classified as false posisiye
original 2.3% [rat) — 11.8% €obertura) with ar'1 and those with a difference value above the threshold (¢hat i

average of 5.3%poi), and cloned 3.8%nekoht i) — reported as not clones) but classified as “clone” or “modified

47.8% ¢ober t ur a) with an average of 11.7%pboka). clone” were classified as false negatives. Based on this, we
The medians are: total — 14.6%, original — 5.3% anghad a false positive rate of 14.8% and false negative rate of

cloned — 10.0%, all by the systepoi 6.7%. We do note that all of the false positive method pairs
. ’ : o . f i lly simil :
While there seems to be a slight trend of increasing clonedOund contained structurally similar code

code with system size, the largest systgynq) has 446,863 In addition to detecting clones in the latest version of the

NCLOC and 13,174 methods, which is much bigger tharmsoftware systems in the Qualitas Corpus, different vession
the second largest,r uby, with 160,360 NCLOC and 7646 of software systems were also analysed. The results are
methods, and yet the amount of cloned code is less thashown in Figure 5.

Percentage of Code Clones Vs Different Versions of Software Systems

20.00%

15.00% ®jhotdraw

¥ freemind
¥ freecol
®jgraph
®argouml
¥ hibernate
‘weka

10.00%

5.00%

Percentage of Code Clones

Software System Versions

Figure 5. Study results showing the percentage of code €lanmss different versions of software systems

VI. DISCUSSION opportunities for improvement.

A. RQ1: Replication S
Q1: Replicatio o ~ B. RQ2: Empirical Study

The CPU time used between original implementation and 0
our implementation was of the same order (our hardware The smallest amount of_c!one_d _code We saw was 3.8%
is somewhat faster). However, the number of clones found N€kohtml (6.5% if the original is included), which is the
was significantly different. Some of the clone pairs weS€cond smallest system (6,625 NCLOC and 185 methods)
detected were manually reviewed to assess the correctne¥§ @nalysed, meaning that the absolute amount of cloned
of the result. A large proportion the clone pairs we foundC0de was aiso fairly small (421 NCLOC cloned code).
were the result of generated code. These generated coflven that half of the systems we analys_ed (all !a_rger
fragments were very similar to each other and therefordh@n nekohtml) have 10% or more (14.6% if the original
detected as code clones. We suspect that these methods witdncluded) points to non-trivial amounts of cloned code
not considered in the original paper. In open source Java systems. This is consistent with the

Yuan and Guo indicated that their implementation hadfmdmgs of o.the.r studies. .)
a very low false positive rate, but did not provide any . Ove_r the Ilfc_e—tlme ofasystem, a_lccordlng to Flg_ureSthere
information on the false negative rate. Often there is agirad 'S @9ain possibly a slight increasing trend over time for the
off between false positives and false negatives, and so it iSYStéms that we have 20 or more versions for, however, as
possible that their false negative rate was quite high.eincSYSIEMS also grow over time, this might be further evidence
we had to develop our own normalisation and false positivef @ relationship between system size and amount of cloning.
elimination steps, it is possible that our false negatie ra AS We gather more data, we may be able to confirm this
is not as high as the original. This might also explain why'élationship. _ o _
we found so many more candidate clone pairs. _ It is worth noting that our implementation, like the orig-

Another possible source of variation was that it was not"@l, has very good performance. We were able to analyse
clear exactly which classes were examined in the origina"€@rly 27 million NCLOC in about 26 hours on commodity
study, since Yuan and Guo analysed bytecode and wBardware.
analysed source code. .

While we did not get exactly the results reported by YuanC' Threats to Validity
and Guo, they are close enough for us to conclude that the As with other clone detection research, a possible threat
CMCD technique is as good as they claim. Furthermore, byo the validity of our results is what we consider to be a
manually reviewing detected clone pairs, there are clearlglone. We have mitigated this threat by requiring that two

people (the first two authors) agree on the designation (ag4] I. Baxter, A. Yahin, L. Moura, M. Sant'’Anna, and L. Bier,
described in Section IV) of each candidate pair.
Another possible threat is the correctness of our imple-

mentation. In particular, there is the possibility that om
peculiar combination of circumstances will be mis-repadrte

[5]

by our implementation. We have mitigated this through
many hours of manual review of candidate clone pairs. 6]
One issue with comparing our results with others is that
fact that we detect clones at the method level of granularity
This means that if the code in one method is completely
copied to another method, but that other method also has at’]
least as much code again added, we will not detect the use of
cloning. We do not doubt that this happens, but our manual[g]
reviews found few such examples, leading us to conclude

the impact on our results is small. [9

We have provided false positive and false negative rates
for our results. These are based on our manual reviews, as
supported by our tool, and so are necessarily a small subsBt0]
of the total code base we analysed. While we cannot rule
out missing incorrectly classified clone pairs, the nature o
the CMCD technique is such that we believe our results aréll]
likely to apply generally.

Finally, we note that our results are generally in agreement
with other studies, which gives us good confidence in themj12]

VIl. CONCLUSIONS

We have examined a technique for clone detection pro-
posed by Yuan and Guo [7] and found that generally theif13]
claims for its performance and accuracy are warranted. We
have improved the original technique, in particular by addi
more counting conditions and a separate method COUTM]
matrix. Applying our improved technique to 43 systems we
found that 1 in 2 systems had at least 10% cloned code, not
counting the original. [15]

In future work, we would like to improve the error bounds
on the accuracy of our implementation and adapt it to work
on sub-method granularity. While our empirical study is onel16]
of the largest performed, it was not done on the whole of the
Qualitas Corpus due to project constraints. We hope carry
out an even larger study. We would also like to do the same, 7,
for other programming languages.

There is still much to be discovered about code clones.
Based on our findings reported here, we believe the CMCD
technique provides a very promising means to support sucHl
discovery.

(1]

(2]

(3]

REFERENCES

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagne;,lg]

“Do code clones matter?” i31lst International Conference

on Software Engineering IEEE, 2009, pp. 485-495.

J. Liand M. D. Ernst, “CBCD: Cloned buggy code detector,”

in 2012 34th International Conference on Software Engineer-[zo]
ing (ICSE) IEEE, Jun. 2012, pp. 310-320.

B. Baker, “On finding duplication and near-duplication i

large software systems,” in.., 1995., Proceedings of 2nd
Working Conference qriul. 1995, p. 86.

“Clone detection using abstract syntax trees,Pioceedings.
International Conference on Software Maintenance (Cat. No
98CB36272) IEEE Comput. Soc, 1998, pp. 368-377.

R. Falke, P. Frenzel, and R. Koschke, “Empirical evahrabf
clone detection using syntax suffix treeBfhpirical Software
Engineering vol. 13, no. 6, pp. 601-643, Jul. 2008.

N. Schwarz, M. Lungu, and R. Robbes, “On how often code is
cloned across repositories,” RD12 34th International Con-
ference on Software Engineering New Ideas and Emerging
Results Track (ICSE) leee, Jun. 2012, pp. 1289-1292.

Y. Yuan and Y. Guo, “CMCD: Count Matrix Based Code
Clone Detection,” in2011 18th Asia-Pacific Software Engi-
neering Conference IEEE, Dec. 2011, pp. 250-257.

K. Popper,THE LOGIC or SCIENTIFIC DISCOVERYRout-
ledge, 1968.

] C. Drummond, “Replicability is not reproducibility: mas it

good science,” irEvaluation Methods for Machine Learning
ICML Workshop no. 2005, 2009, pp. 2005-2008.

N. Cartwright, “Replicability, reproducibility, antbbustness:
Comments on Harry CollinsHistory of Political Economy
1991.

C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,”Science of Computer Programming
vol. 74, no. 7, pp. 470-495, May 2009.

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Néer
“Comparison and Evaluation of Clone Detection ToolEEE
Transactions on Software Engineerjngol. 33, no. 9, pp.
577-591, Sep. 2007.

J. Johnson, “Substring matching for clone detectiom an
change tracking,” ilProceedings International Conference on
Software Maintenance ICSM-94|EEE Comput. Soc. Press,
1994, pp. 120-126.

B. S. Baker, “Finding Clones with Dup: Analysis of an
Experiment,” IEEE Transactions on Software Engineering
vol. 33, no. 9, pp. 608-621, Sep. 2007.

R. Komondoor and S. Horwitz, “Using slicing to identify
duplication in source code,” iith International Symposium
on Static Analysis (SASyul. 2001, pp. 40-56.

J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the
automatic detection of function clones in a software system
using metrics,” inProceedings of International Conference on

Software Maintenance ICSM-96IEEE, 1996, pp. 244-253.

K. Kontogiannis, “Evaluation experiments on the détet of
programming patterns using software metrics,”Rroceed-
ings of the Fourth Working Conference on Reverse Engineer-
ing. |EEE Comput. Soc, 1997, pp. 44-54.

N. Davey, P. Barson, S. Field, and R. Frank, “The dewelop
ment of a software clone detectotriternational Journal of
Applied Software Technologyol. 3/4, no. 1, pp. 219-236,
1995.

R. Vallée-Rai, P. Co, and E. Gagnon, “Soot-a Java lngec
optimization framework,” inConference on the Centre for
Advanced Studies on Collaborative Research (CASCON)
Nov. 1999, p. 13.

E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lump
H. Melton, and J. Noble, “The Qualitas Corpus: A Curated
Collection of Java Code for Empirical Studie2010 Asia
Pacific Software Engineering Conferengp. 336—345, Nov.
2010.

