
Towards a Curated Collection of Code Clones
Ewan Tempero

Computer Science
The University of Auckland

Auckland, New Zealand
e.tempero@auckland.ac.nz

Abstract—In order to do research on code clones, it is necessary
to have information about code clones. For example, if the
research is to improve clone detection, this information would
be used to validate the detectors or provide a benchmark to
compare different detectors. Or if the research is on techniques
for managing clones, then the information would be used as
input to such techniques. Typically, researchers have to develop
clone information themselves, even if doing so is not the main
focus of their research. If such information could be made
available, they would be able to use their time more efficiently.
If such information was usually organised and its quality clearly
identified, that is, the information is curated, then the quality
of the research would be improved as well. In this paper,
I describe the beginnings of a curated source of information
about a collection of code clones from the Qualitas Corpus. I
describe how this information is currently organise, discuss how
it might be used, and proposed directions it might take in the
future. The collection currently includes 1.3M method-level clone-
pairs from 109 different open source Java Systems, applyingto
approximately 5.6M lines of code.

Index Terms—Code Clones; Corpus; Code Analysis; Empirical
Studies

I. I NTRODUCTION

Those doing empirical studies face a number of barriers
to their research. Empirical research is fundamentally about
studying the “real world”, and so one barrier is accessing the
relevant part of the real world. In the world of software clones,
the relevant part is source code and the clones (or other forms
of redundancy) that exists in it.

A crucial aspect of good science is replication. While there
may be some disagreement as to exactly what this means (see
e.g. [4]), fundamentally it is about doing studies in such a
way as to allow some reasonable form of comparison of their
results with other studies (those being replicated). A barrier to
replication is getting access to enough of the infrastructure and
materials of past studies to support their replication. Again, in
the world of software clones, the materials are the source code
and clone information.

The use of standard datasets to support research is common
in other areas such as Linguistics ([10]), but also in Computer
Science ([20] and Software Engineering ([7], [3]). In this paper
I describe a first attempt at developing a similar dataset for
clone research. This work is based on a curated corpus of open
source Java software — the Qualitas Corpus [17], and inspired
by the Bellon clone benchmark. [2]

Specifically, I describe the Qualitas Corpus Clone Collec-
tion (hereafter, “the Collection”), a set of datasets describing

possible clone pairs in a number of open source Java systems.
The current release includes 1.3M method-level clone-pairs
from 109 different open source Java Systems, applying to
approximately 5.6M lines of code.

The rest of the paper is organised as follows. In the next
section, I briefly summarise current clone research to establish
the need for the Collection and to identify likely uses for
it, and discuss other efforts to develop datasets to support
clone research. This provides the background to develop the
requirements for a curated collection of code clones, which
are described in Section III. Section IV describes the current
organisation of the Collection and summarises its current
contents. Section V discusses how well the current Collection
meets the stated requirements, the short-term development
plans, and potential future development. Finally, SectionVI
summarises the paper and presents conclusions.

II. BACKGROUND AND RELATED WORK

A. Terminology

This section introduces the terminology used in the rest of
the paper and gives an overview of related research. Roy et
al. provide a good survey [16] and much of their terminology
is used here.

A code fragment is any sequence of code lines that can
be any granularity, such as a complete method definition or a
block. A clone pair is defined by having two code fragments
that are similar by some given definition of similarity. When
more than two fragments are similar, they form aclone cluster.

There are two main types of similarity between code
fragments: textual similarity and semantic similarity. Two
fragments have textual similarity when the text they contain is
matches to a large degree. This might be the consequence of
copying and pasting one fragment to the other, perhaps with
minor modifications. Two fragments are semantically similar
if they have similar functionality, but may have completely
different text. The Collection is (for now) intended to support
research with respect to textual similarity.

Clone types can be categorised in different ways. A common
classification is the following four types based on both textual
and semantic similarities ([16]):
Type-1: Identical code fragments except for variations in

whitespace, layout and comments.
Type-2: Syntactically identical fragments except for varia-

tions in identifiers, literals, types, whitespace, layout
and comments.



Type-3: Copied fragments with further modifications such as
changed, added or removed statements, in addition
to variations in identifiers, literals, types, whitespace,
layout and comments.

Type-4: Two or more code fragments that perform the same
computation but are implemented by different syn-
tactic variants.

B. Clone Research

Of the large body of existing research on code clones,
what is relevant to this work is thevariety of research goals.
Different goals may have different requirements for the data
they need or even the data format. In this section I provide
summaries of a sample from the research literature. This
sample is necessarily selective, where the primary criteria is
the kind of research being done rather than, for example, what
the results are.

A major concern in clone research is clone detection. The
primary goal for this kind of research is to improve detection
characteristics such as the accuracy (e.g. [1]) or performance
(e.g. [12]), or both (e.g. [21]). For this kind of research, the
kind of input that is needed is, the source code to detect the
clones in and, ideally, what clones exist. Just having the source
code available without the clone information can representa
major savings of effort, as well as supporting replication (see
below), but clearly having the clone information would be even
better.

If the clone information does not exist, then the output by
the detectors must be evaluated by some other means. Often,
these means are not reported, but clearly must take time and
effort. Currently, the only means of evaluation reported isthat
of human judgement. One documented example of this is the
work by Bellon et al [2]. They compared 6 clone detectors
that used different approaches over 4C and 4 Java systems
with respect to their accuracy and performance. The programs
varied from 11K SLOC to 235K SLOC (a similar range for
both languages).

The results were evaluated against a benchmark set devel-
oped by Bellon. It was developed by evaluating the candidates
proposed by the tools being studied. An automatic process
randomly chose 2% of the 325,935 candidate clones reported
from all tools with the chosen candidates uniformly distributed
across the tools. These were presented anonymously (that is,
without identifying the tool the candidates came from) to
Bellon, who made a decision as to whether or not the candidate
is an actual clone pair. The authors note that this was an ex-
pensive process. Despite looking at only 2% of all candidates,
it took nearly 80 hours to complete the classification. The
benchmark also included some clone pairs injected by Bellon.

The Bellon benchmark has been used by other studies. For
example, Falke et al [8], who also compared several tools using
6 of the 8 systems from the Bellon et al study. They created
their own reference set of clones, but did so following the
same process as Bellon.

Clearly Falke et al. benefited from the existence of the
Bellon benchmark. However, by not reusing the original

benchmark reference set, the benefit is not as much as it could
have been. Had Falke et al. instead been able to put their efforts
into re-evaluating the Bellon benchmark reference set, they
would have then had a reference set that was of higher quality,
since it would have been checked by two people independently.
This is especially important as both groups raised the fact that
their reference sets were dependent on the judgement of one
person. Having even only two people perform the check would
have significantly raised the quality of the reference set, and
so increased the quality of the results of the studies.

Many studies pre-process the code being analysed in some
way. Bellon et al. normalised all code by removing empty
lines, moving lines containing only an open or close brace to
a proceeding line, and “paying attention” to comments. Yuan
and Guo did not include constructors and “small” methods
in their CMCD clone detector [21]. In fact it seems quite
common to have a minimum limit on clones that are reported
(e.g number of lines [2] or token density [8]).

The construction of a reference set by human judgement
is not only expensive, but also subjective. It is very rarely
reported what criteria have been used. Having only one
person involved introduces a threat to validity, as Bellon et
al. and Falke et al. acknowledged. It is known that there is
disagreement in the community regarding what constitutes a
clone. Walenstein et al. carried out some studies (also using
systems from the Bellon benchmark) to explore this issue [19].
They report that in some cases the participants agreed on only
1 in 4 candidates. They did note that some of the disagreement
was due to the intended purpose of the classification.

More recently, Koschke has called for a “general notion
of redundancy, similarity, and cloning” [14]. Furthermore,
the issue of clone classification still exists 5 years later,as
demonstrated by the study carried out by Chatterji et al. [5].
While it is not the goal of this work to resolve this issue, is
does impact the development of a clone collection if clone
classification is intended to be part of the data collected.
Merely providing a “list of clones” is unlikely to be of use to
everyone, or even the majority of potential users.

Chatterji et al. also identified a number of research questions
regarding clone research. One of specific relevance to the
development of a clone collection is that of investigating
clone evolution, which suggests that for the Collection to be
useful, it should include multiple versions of a system. Exactly
what constitutes a “version” and what version information is
necessary depends on what it is about clone evolution that isof
interest. For example, some studies may consider it sufficient
to use the public releases for a system, whereas others may
need more fine-grained information such as individual line
changes (see e.g. [13], [15].

An issue that arises in any empirical research is how to
manage the data. As well as what should be included (such
as clone classification), there are also questions about howto
effectively share it. Harder and Göde discuss this issue and
their solution to it [9]. Specifically, they introduce theirRich
Clone Format (RCF) data format, and Cyclone, their clone
inspection tool that is based on RCF. I will return to this issue



in section V.
Depending on the research goals, various attributes of clones

are important. Clone pairs are usually reported as locations
(e.g. file + line numbers). A number of studies classify the
clones according to the classification given above. For some
studies, the goal of the research is directly related to this
classification (for example, such as that by Tiarks et a. [18]).
Some research requires describing the relationship between
clone pairs in more details, such as Juergens et al.’s concept
of inconsistent clones [11]. Juergens et al. also related clones
with fault information.

C. Corpus Development

Clone research depends, directly or directly, on having code
(or something like it) available. Finding enough code can
be a chore that contributes little to the fundamental research
being done. The Qualitas Corpus (hereafter “the Corpus”) is
intended to reduce the cost of this kind of chore [17]. It is
a curated collection of open-source Java software systems,
consisting (currently) of the source and compiled code for
111 systems. There are multiple versions for most systems,
with 14 having 10 or more versions. My experience with
the Corpus provides some guidance in developing a clones
collection, and the Corpus also provides a good starting point
for the Collection. Further details of the Corpus makeup will
be provided as needed.

III. R EQUIREMENTS

This section provides the an initial set of, and motivation
for, requirements that a developer of a clone collection should
take into consideration.

The first requirement is to agree upon the source code that
the clones come from. This seems like a simple requirement
to meet, but in fact it can be quite expensive in time and
effort. Furthermore, it is not enough to just acquire an archive
file with some source code. Decisions need to be made about
which files in the archive will actually be analysed, and those
decisions need to berecorded and reported if replication (or
at least comparison between studies) is to be supported.

For example, many open source Java systems come with
test suites. Presumably these are not going to be of interestto
a clone researcher, and probably any clone researcher would
make the same decision. But presumptions and probabilities
lead to uncertainties, which lead to difficulties when trying to
replicate a study or compare results. A number of open source
Java systems come with example code showing their use.
Probably this code also is not of interest to a clone research,
except, it might be interesting if the examples contain clones
of code in the system, so different researchers may make
different decisions about example code. Some systems have
multiple implementations of some code to support different
infrastructure. Analysing all the code might lead to many
clones being reported, but if the analysis is limited to justone
implementation, that needs to be reported. A longer discussion
of such issues can be found in the development of the Qualitas
Corpus [17].

With so many possibilities, there is unlikely to be a “correct”
choice, and in fact for many it probably does not matter which
choice is made, so long as it is recorded and reported. This
means there needs to be some agree-upon means to specify
exactly what source code has been used in any study.

The next requirement might be a reference set of clone pairs.
Since there is no agreement within the community as to what
exactly a clone is, this requirement would be difficult to meet.
Instead, I propose a reference set of clone paircandidates. The
distinction is, instead of the data providing an absolute truth —
clone or not clone — it provides a continuum of possibilities,
together with information about the likelihood, or knowledge
about, each possibility. The candidate set might also include
definite non-clones, for example pairs of code fragments that
are often reported by clone detection algorithms as clones even
though everyone agrees they are not. Other candidates may
only be considered clones under some circumstances, such as
depending on whether or not constructors are analysed. The
principle here is, whatever decision is made, its rationalebe
recorded and reported.

Specifically, a clone pair candidate consists of a specifica-
tion of a code fragment, that includes its location within the
source code being analysed. This most likely will be a file
name and line or character positions for the beginning and
end of the fragment. Associated with this candidate is meta-
data describing its various attributes. For every attribute with
a value, there should be details of theprovenance of that value
— information that explains why the value has been assigned
to that attribute. Examples of what this might look like are
given below and in the next section. Values for which there is
no provenance should be treated as little better than a guess
(such a thing is explicitly allowed).

From a practical points of view, the candidate data needs to
be such that it can be easily used. No one will want to have
to puzzle through all the qualifications as to whether a given
candidate is really a clone or not right at the beginning of
their research. For many researchers, they will be happy with
a data set that is good enough to get started with. So long
as they have some assurance that the accuracy is reasonable
(e.g., false positives and false negatives less than 10%) they
can worry about the details once their research has progressed
enough. For this reason, every candidate will have a value for
the “is this a clone” attribute.

The provenance for the “is this a clone” attribute could
consist of many things. As noted in section II, cloneness
is often decided by human judgement. If this is the case
for a given candidate, then that is what would be noted. It
would be good to also include some means of identifying who
provided the judgement and when. If the human was following
some guidelines to make the judgement, then those should be
provided. A candidate that has three different people providing
the same judgement several months apart would give more
confidence of the judgement than just one person. I am not
necessarily advocating naming names. It is probably sufficient
to just identify the research group or something similar.

A common source of candidates is from clone detectors.



The more clone detectors that agree on a given candidate, the
more confidence we might have on both the assessment of
the candidate and the performance of the detectors. Detectors
often have parameters for tuning, and so the values used
also need to be recorded. Detectors are software too, and so
they change, perhaps changing the results they produce. This
means that some form of version identification should also be
provided. Just indicating when the detector was run may not be
sufficient to identify the version, although any data set should
include a timestamp indicating when it was created. Many
detectors also give a “score”, with “cloneness” determinedby
a threshold parameters. While the threshold would be probably
a parameter to the detector, it is likely to be useful to also
report the score. This would, for example, allow studies to be
performed using a different threshold, without the expenseof
re-creating the candidate set.

There are many other attributes that might be included.
Some examples, including some comments about possible
provenance, give listed below.

• Granularity. This might be determined by the location
information (from which number of lines might be
determined), but other indications of granularity (e.g
“method”) may not be so clear.

• Code fragment size. This will actually be multiple at-
tributes, as different researchers have found value is
measuring clone size in different ways (e.g. number of
tokens, different variations of lines of code).

• Code fragment description. There may be other infor-
mation, other than granularity and size, that is relevant
to a researcher’s use of the data. For example, some
researchers may want to include “methods” that are
constructors, and some may not. Other examples include
concepts such as initialiser blocks (static or not) in
Java. There may be questions regarding code fragments
belonging to nested classes. Another question is whether
(in Java) interfaces are considered or not (complicated by
the fact that interface definitions can — and do — have
nested classes).

• Clone Type. Type 1 and 2 might be done via automatic
analysis, but even so it would be useful to have some
indication of the criteria used.

• Cluster. If the candidates have been identified as belong-
ing to a cluster, then which cluster it is and how clusters
were determined should be included. For example, is the
cluster a clique (all pairs of code fragments in the cluster
are also clone pairs) or a connected component (there is a
path of clone pairs between each pair of code fragments).

• Clone proportion. The proportion of the code base that
the clone pair (or, more typically, clone cluster) is. This
will depend on how code fragment size is determined,
and will require the measurement with same metric for
the system being analysed. For example, if constructors
and “small” methods are not considered (as was the case
with Yuan and Guo’s work [21]), should the proportion
be computed against the complete code base, or just the

code that was considered?
• Origin. Any information as to which fragments were

copied from which, determined either from information
provided by the developers, or from analysis of version
control systems (such as was done by Krinke et al. [15]),
or similar.

Generally, as more studies are done on the collection, they
will validate or refute the data, or possibly provide new data
to add.

Some data about the candidates is likely to be common
across a set, for example, all the candidates from the same
software system might have been determined by a single
execution of a detector with the same parameters and (about)
the same time. Such sets need to be managed as units, to
ensure that the fact that this relationship is not lost. There
will also be less duplication of common information is all
candidates for a given system are

Finally, I believe there should be one or more attributes
providing some assessment of the quality of the data. Exactly
what this should look like will probably only be determined
over time by the community, so I propose to start with a
simple ordinal scale indicating the level of confidence for each
candidate. The lowest value will be assigned to any candidate
that has been identified as a clone (or a non-clone) by a
clone detector. The confidence level can be increased only by
providing more independent information about the assessment.

For example, a candidate whose classification is checked
by a human may have its confidence level increased, but it
will depend on the circumstances. If the candidate currently is
on the lowest level, then a human check will almost certainly
raise the level (assuming the human agrees with the tool). Ifthe
human disagrees with the current classification that is based on
other humans’ judgement, then the level may not be increased.
As another example, if the detector providing the original
classification is mature and its accuracy well-established, then
a candidate’s classification may also be increased.

IV. CONTENTS OF THECOLLECTION

A first attempt at a clone collection as described in the
previous section exists. It currently includes 1.3M method-
level clone-pairs from 109 different open source Java Systems
(see Figure 1), applying to approximately 5.6M lines of code
(excluding “small” methods and constructors). Details of the
Collection are available at www.qualitascorpus.com/clones.1

The clone corpus uses the Qualitas Corpus as the source of
the code[17, Release 20120401]. All location information for
clone candidates is given with respect to a Qualitas Corpus
installation. The full Qualitas Corpus consists of 111 open
source Java systems, with multiple versions available for most
systems. There are 14 systems that have 10 or more versions,
which can provide the basis for some code evolution studies.
Full details are provided on the Corpus website.

1REVIEWERS : A preliminary release is available from www.
qualitascorpus.com/clones/reviewonly. It is made available to you for review
purposes only. It is still under development but what is there should confirm
the claims made about it.



ant antlr aoi argouml aspectj axion
azureus batik c_jdbc castor cayenne
checkstyle cobertura collections colt
columba compiere derby displaytag drawswf
drjava emma exoportal findbugs fitjava
fitlibraryforfitnesse freecol freecs
freemind galleon ganttproject gt2 hadoop
heritrix hibernate hsqldb htmlunit informa
ireport itext ivatagroupware jFin_DateMath
jag james jasml jasperreports javacc jboss
jchempaint jedit jena jext jfreechart
jgraph jgraphpad jgrapht jgroups jhotdraw
jmeter jmoney joggplayer jparse jpf jrat
jre jrefactory jruby jsXe jspwiki jtopen
jung junit log4j lucene marauroa maven
megamek mvnforum myfaces_core nakedobjects
nekohtml openjms oscache picocontainer
pmd poi pooka proguard quartz quickserver
quilt roller rssowl sablecc sandmark
springframework squirrel_sql struts sunflow
tapestry tomcat trove velocity wct webmail
weka xalan xerces xmojo

Fig. 1. The current release of Collection contains data for the latest version
available from the Qualitas Corpus for these systems.

The Corpus comes with metadata providing information
about the software it contains. Included in this information
(in the contents.csv metadata file) is, for every Java
type mentioned in a system’s software source and binary
(deployment) distribution, an assessment as to whether that
type was developed for that system’s deployment, whether the
source code for that type is provided in the distribution, and
whether the type is deployed (provided as byte code, that is,
in compiled form). This information can be used to specify
precisely what is being analysed, and so resolving issues such
as: are classes for which there is source code but which are
not deployed (e.g. test classes) included ; are types for which
both source code and byte code is provided but not developed
for the system (e.g. third-party library code) included. Inthe
case of the Collection, the types that are analysed are those
for which there is source code, byte code, and are considered
developed for the system.

Figure 1 shows the systems for which there is currently
clone data available. The data exists for the latest versionof
each system that is in release 20120401 of the Corpus (which
versions those are can be found on the Corpus website). In
fact, data exists for all systems except foreclipse and
netbeans. These are the two largest systems in the corpus,
and the current version of tool used to generate the data cannot
handle systems their size to to memory limitations. The largest
systems for which data is provided isjre, at about 0.9M non-
comment non-blank lines of code. There is also data for 28
versions of one system (freecol).

The candidate attribute data comes from a clone detector
based on the CMCD technique developed by Yuan and Guo
[21]. This detector, calledmete-cmcd, is described else-

.../QCCC/
Systems

ant/
ant-1.1/
ant-1.1-clones.rcf
provenance/

ant-1.1-mete-cmcd.csv.gz
...

ant-1.8.2/
ant-1.8.2-clones.rcf
provenance/

ant-1.8.2-mete-cmcd.csv.gz
...

/antlr
...

/aoi
...

...

Fig. 2. Planned Collection Organisation

where [6]. The current version of it evaluates at the level
of method granularity, and does not evaluate constructors or
“small” methods (a parameter). This detector reports a “dif-
ference” score for each candidate, with the determination of
whether the candidate represents a clone pair or not dependent
on a “threshold” parameter. For performance reasons and to
reduce false positives, the detector uses two heuristics: the ratio
of the size of the methods (if too different then the methods
cannot be clones) and text difference ratio (ditto). There are
other parameters specific to its operation but do not affect the
clones reported.

Figure 2 shows the planned organisation for the collection.
The data is organised along the same lines as the Corpus;
data in the Collection for multiple versions of systems (where
it exists) is kept together and named using the same system
and version identifier used by the Corpus. The figure shows
4 systems, with the first (ant) having at least two versions
(1.1 and1.8.2).

For each system version, there is the master file containing
the data pertaining to that system version. It will be in RCF for-
mat (however this is not implemented at the time of writing).
This data should include the specification of each clone pair
and references to the relevant provenance information. Also
associated each system version is any relevant provenance
information. How this is organised and what format the data
is in will depend on how it is gathered. The figure shows the
output files from themete-cmcd detector (which produces
the data as a tab-separated file).

To give an idea of the kind of information that should be
provided, themete-cmcd output is described in more detail.
Figure 3 shows an outline of such a file. Each file consists
of some information common to all candidates listed, a list
of candidates, and also a list of clone clusters and data about
them.

The common information includes the tool version used to



generate the data file, the time the data file was created, and
the parameters provided to the tool (mostly described above).
The file is intended to be relatively self-contained, that is,
anyone should be able to determine what the different values
mean without having to refer to some other source. In fact,
there is always likely to be some specialised information that
would make such a goal difficult to achieve, but there should
be enough hints to remind people already somewhat familiar
with the content.

Next there is summary information about the data set,
such as what exactly the data applies to, how many files
were examined, how many clone pairs were found, and what
proportion the fragments in clone pairs are of the code base
(“Code clones”).

In fact there are two proportions given. The other (“Cloned
code”) is based on the assumption that every cluster has an
“original” code fragment and all other fragments have been
cloned (directly or indirectly) from that. The “Cloned code”
proportion is the proportion of code fragments in clone pairs
other than this “original” fragment. Even if this assumption is
true, which fragment is the original is not (currently) known,
somete-cmcd chooses the smallest fragment as the original.
Becausemete-cmcd uses the method granularity, and will
only consider methods to be candidate clone pairs if they
are roughly the same size, the “Cloned code” proportion is
going to be close to what it should be had the original method
(existed and) been used to compute the proportion. Choosing
the smallest means the proportion will always be the same
value for the same code base, and be conservative with respect
to what the actual value might be.

While some information, in particular which system version
a given data file applies to, can be inferred from context (such
as which directory the file is stored in), such information is
included keeping with the principle of self-containment.

The next section of the data file provides the clone data.
Each line represents a clone pair, described in 13 fields. Figure
4 describes those fields in the order they appear (in fact the
text in this figure appears in the data file). Some of this
information is specific to the source of the information (that is,
mete-cmcd), but the information describing the code clone
pairs (cluster and location of code fragments) would appear
in the master file.

The final section of the data file contains information for
the clusters. This includes, for each cluster ID, the number
of clone pairs in the cluster, the number of distinct code
fragments (methods) in the cluster, the sum of the size (lines
of code) of each code fragment in the cluster, and the size for
the cluster not counting the smallest code fragment. All of this
information can be inferred from the clone pair data, but it is
useful to have it provided explicitly.

V. STATUS AND DISCUSSION

Most of the data in the Collection as at a low level of
confidence, since it has been provided by a relatively untested
clone detector. One of the systems (freecol-0.8.0) has
been examined by the initial developers ofmete-cmcd. That

Cluster A unique ID identifying the cluster the clone pair
belongs to.

File1 The name of the file (sans foldpath prefix) containing
the lexically first method in the clone pair.

Method1 The name of the lexically first method in the clone pair.
Location1 The beginning and ending line numbers in the file

where the lexically first method can be found.
ELOC1 The number of lines of code in the lexically first

method.
Nodes1 The number of nodes in the AST for the the lexically

first method.
File2 The name of the file (foldpath common prefix) contain-

ing the lexically second method in the clone pair.
Method2 The name of the lexically second method in the clone

pair.
Location2 The beginning and ending line numbers in the file

where the lexically second method can be found.
ELOC2 The number of lines of code in the lexically second

method.
Nodes2 The number of nodes in the AST for the the lexically

second method.
Diff The normalised difference score between the two meth-

ods.
RawDiff The raw difference score between the two methods.

Fig. 4. Clone Pair fields frommete-cmcd

data has not yet been incorporated, but once that is done the
confidence level for that data will be increased.

Another possible source of confidence information is the
Bellon Benchmark. All of the Java systems in that are only
sub-systems of systems in the Corpus (e.g.swing from the
Bellon benchmark is part ofjre in the Corpus). In fact all
Bellon systems are subsystems of eitherjre, eclipse, or
netbeans — that is, including two systems for which there
is currently no data in the Collection. While it would be good
to include the Bellon reference set, it will need to be matched
to the appropriate code (version) in the Corpus first.

What the Collection does have is a good amount of data.
Hopefully, even though it is only at a low level of confidence,
it is still of good enough quality, and there is enough of it, to
be useful to someone. Over time, as it is used, its quality will
hopefully improve.

That said, there are some limitations in the Collection. One
is that the candidates are only at the method granularity level.
While the data will still be of use to those interested in
clone pairs that are non-method fragments, some effort will
be required to map their results to the Collection data. The
main reason for including line number location information
for candidates is to help with this mapping.

Another limitation is that the Corpus (and hence the Collec-
tion) is only a single language (Java) and is all open source.It
would be much more useful if other languages were available
(however including close-source is likely to be more difficult,
given intellectual property concerns).

The limitations listed above apply to the data in the Collec-
tion, however there is also a limitation with regards how the
Collection should be updated. The question here is, if someone
does use the Collection and gathers data that could be used to



Tool: mete-cmcd: 2013-01-20T1620
Timestamp: Mon Jan 21 01:10:53 NZDT 2013
Parameters
Fold Path: . . . A path prefix that is elided when displaying paths not shown for presentation purposes
Difference Threshold: 45 The largest value of the normalised CM difference that is considered a clone pair
Minimum AST nodes: 50 The definition of ’small’ (in AST nodes)for omitting small methods.
Text difference threshold: 0.5 If the method texts differ bymore than this ratio then not clones.
Size ratio threshold: 0.65 If the method size (measure as number of nodes in AST) ratio is more than this then

not clones.
Comments ignored: true
Global Values
Sysver: checkstyle-5.1 Identification of what was analysed(typically a corpus System Version)
Files: 267 Number of files analysed
Methods: 680 Number of methods, not counting constructors or methods that are too small.
ELOC (Methods only): 9920 ELOC for methods, not counting constructors or methods that are too small. ELOC is

lines of code, not counting lines that are blank, contain only comments, or only braces.
Clone pairs: 244 Number of clone pairs
Clusters: 57 Number of clusters
Code clones: 2097 (0.21) ELOC of code that is in a clone pair (proportion of ELOC).
Cloned code: 1470 (0.15) ELOC of code in clone pair minus sizeof smallest fragment of each cluster (proportion)

Fig. 3. Example data frommete-cmcd

improve confidence levels for candidates, what happens next?
At the moment, there is no defined process to following other
than to submit that data in whatever form it is available. Ideally
the data might be provided in a standard format such as RCF,
however any such data will need to extend the core RCF. If
different researchers extend RCF in different ways, there will
no longer be any benefit to using a standard. Resolving this
issue, and generally advancing the state of the Collection,will
have to wait until we all have more experience.

VI. CONCLUSIONS

In this paper, I have discussed the need for a standard dataset
to support clone collection, and described an attempt to design
and implement one — the Qualitas Corpus Clone Collection.
How useful the Collection will be in its current form remains
to be seen, but hopefully the data is of sufficient quality and
quantity that some researchers will find it useful.

REFERENCES

[1] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. InICSM, pages 368–377, 1998.

[2] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and Evaluation of Clone Detection Tools.IEEE
Transactions on Software Engineering, 33(9):577–591, September 2007.

[3] S M Blackburn, R Garner, C Hoffmann, A M Khang, K S McKinley,
R Bentzur, A Diwan, D Feinberg, D Frampton, S Z Guyer, M Hirzel,
A Hosking, M Jump, H Lee, J B Moss, B Moss, A Phansalkar,
D Stefanović, T VanDrunen, D von Dincklage, , and B Wiedermann.
The {DaCapo} benchmarks:{Java} benchmarking development and
analysis. InOOPSLA, pages 169–190, Portland, Oregan, October 2006.

[4] Nancy Cartwright. Replicability, reproducibility, and robustness: Com-
ments on Harry Collins.History of Political Economy, 1991.

[5] Debarshi Chatterji, Jeffrey C. Carver, and Nicholas A. Kraft. Claims
and beliefs about code clones: Do we agree as a community? A survey.
In IWSC, pages 15–21, June 2012.

[6] Xiliang Chen, Alice Yuchen Wang, and Ewan Tempero. A replica-
tion and reproduction of code clone detection studies. Unpublished
manuscript (Under Review), 2013.

[7] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure
and its Potential Impact.Empirical Softw. Engg., 10(4):405–435, 2005.

[8] Raimar Falke, Pierre Frenzel, and Rainer Koschke. Empirical evaluation
of clone detection using syntax suffix trees.Empirical Software
Engineering, 13(6):601–643, July 2008.

[9] Jan Harder and Nils Göde. Efficiently handling clone data. In IWSC,
page 81, New York, New York, USA, May 2011.

[10] Susan Hunston, editor.Corpora in Applied Linguistics. Cambridge
University Press, 2002.

[11] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan
Wagner. Do code clones matter? InICSE, pages 485–495, 2009.

[12] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic
token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering, 28(7):654–670, July 2002.

[13] Miryung Kim, Vibha Sazawal, and David Notkin. An empirical study
of code clone genealogies. InESEC/FSE-13, page 187, New York, New
York, USA, September 2005.

[14] Rainer Koschke. Survey of Research on Software Clones.In
Duplication, Redundancy, and Similarity in Software, number 06301
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007.Interna-
tionales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

[15] Jens Krinke, Nicolas Gold, Yue Jia, and David Binkley. Distinguishing
copies from originals in software clones. InIWSC, pages 41–48, May
2010.

[16] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and
evaluation of code clone detection techniques and tools: A qualitative
approach. Science of Computer Programming, 74(7):470–495, May
2009.

[17] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. Qualitas corpus: A curated
collection of Java code for empirical studies. InAPSEC2010, pages
336–345, December 2010.

[18] Rebecca Tiarks, Rainer Koschke, and Raimar Falke. An extended as-
sessment of type-3 clones as detected by state-of-the-art tools. Software
Quality Journal, 19(2):295–331, November 2011.

[19] A. Walenstein, N. Jyoti, and A. Lakhotia. Problems creating task-
relevant clone detection reference data. InWCRE 2003, pages 285–294,
2003.

[20] I H Witten, S J Cunningham, and M D Apperley. The{New Zealand
Digital Library} project. New Zealand Libraries, 48(8):146–152, 1996.

[21] Yang Yuan and Yao Guo. CMCD: Count Matrix Based Code Clone
Detection. InAPSEC, pages 250–257, December 2011.


